Plant Growth Regulation

, Volume 58, Issue 3, pp 269–277 | Cite as

Effects of ABA on primary terpenoids and Δ9-tetrahydrocannabinol in Cannabis sativa L. at flowering stage

Original Paper


This work examined the effects of exogenously applied abscisic acid (ABA) on the content of chlorophyll, carotenoids, α-tocopherol, squalene, phytosterols, Δ9-tetrahydrocannabinol (THC) concentration, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and 1-deoxy-d-xylulose 5-phosphate synthase (DXS) activity in Cannabis sativa L. at flowering stage. Treatment with 1 and 10 mg l−1 ABA significantly decreased the contents of chlorophyll, carotenoids, squalene, stigmasterol, sitosterol, and HMGR activity in female cannabis plants. ABA caused an increase in α-tocopherol content and DXS activity in leaves and THC concentration in leaves and flowers of female plants. Chlorophyll content decreased with 10 mg l−1 ABA in male plants. Treatment with 1 and 10 mg l−1 ABA showed a decrease in HMGR activity, squalene, stigmasterol, and sitosterol contents in leaves but an increase in THC content of leaves and flowers in male plants. The results suggest that ABA can induce biosynthesis of 2-methyl-d-erythritol-4-phosphate (MEP) pathway secondary metabolites accumulation (α-tocopherol and THC) and down regulated biosynthesis of terpenoid primary metabolites from MEP and mevalonate (MVA) pathways (chlorophyll, carotenoids, and phytosterols) in Cannabis sativa.


Abscisic acid Terpenoid α-Tocopherol Phytosterol Δ9-Tetrahydrocannabinol 



Abscisic acid






3-Hydroxy-3-methylglutaryl coenzyme A reductase


1-Deoxy-d-xylulose 5-phosphate synthase







We would like to express our sincere gratitude to Dr. Anna Kulma for her outstanding contributions and her help with UPLC analysis.


  1. Agarwal S, Sairam RK, Srivastava GC, Meena RC (2005) Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biol Plant 49(4):541–550. doi: 10.1007/s10535-005-0048-z CrossRefGoogle Scholar
  2. Ahmed S, Nawata E, Sakuratani T (2006) Changes of endogenous ABA and ACC, and their correlations to photosynthesis and water relations in mungbean (Vigna radiata L. Wilczak cv. KPS1) during waterlogging. Environ Exp Bot 57:278–284. doi: 10.1016/j.envexpbot.2005.06.006 CrossRefGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Chem 72:248–254Google Scholar
  4. Chappell J, Wolf’ F, Proulx J, Cuellar R, Saunders C (1995) Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plans? Plant Physiol 109:1337–1343PubMedGoogle Scholar
  5. Cowan AK, Moore-Cordon CS, Bertling L, Wolstenholme BN (1997) Metabolic control of avocado fruit growth: isoprenoid growth regulators and the reaction catalyzed by 3-hydroxy-3-methylglutaryl catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Physiol 114:511–518PubMedGoogle Scholar
  6. Cuello J, Quiles MJ, Rosauro J, Sabate B (1995) Effects of growth regulators and light on chloroplasts NAD(P)H dehydrogenase activities of senescent barley leaves. Plant Growth Regul 17:225–232. doi: 10.1007/BF00024730 CrossRefGoogle Scholar
  7. Devarenne TP, Ghosh A, Chappell J (2002) Regulation of squalene synthase, a key enzyme of sterol biosynthesis, in tobacco. Plant Physiol 129:1095–1106. doi: 10.1104/pp.001438 PubMedCrossRefGoogle Scholar
  8. Dewick PM (2002) The biosynthesis of C5–C25 terpenoid compounds. Nat Prod Rep 19:181–222. doi: 10.1039/b002685i PubMedCrossRefGoogle Scholar
  9. Estévez JM, Cantero A, Reindl A, Reichler S, León P (2001) 1-Deoxy-d-xylulose 5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276:22901–22909. doi: 10.1074/jbc.M100854200 PubMedCrossRefGoogle Scholar
  10. Fellermeier M, Eisenreich W, Bacher A, Zenk MH (2001) Biosynthesis of cannabinoids: incorporation experiments with 13C-labeled glucoses. Eur J Biochem 268:1596–1604. doi: 10.1046/j.1432-1327.2001.02030.x PubMedCrossRefGoogle Scholar
  11. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430. doi: 10.1038/343425a0 PubMedCrossRefGoogle Scholar
  12. Gondet I, Weber T, Maillot-Vernier P, Benveniste P, Bach TJ (1992) Regulatory role of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase in a tobacco mutant that overproduces sterols. Biochem Biophys Res Commun 186:888–893. doi: 10.1016/0006-291X(92)90829-A PubMedCrossRefGoogle Scholar
  13. Guzman M (2003) Cannabinoids: potential anticancer agents. Natl Rev 3:745–755Google Scholar
  14. Herbinger K, Tausz M, Wonisch A, Soja G, Sorger A, Grill D (2002) Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiol Biochem 40:691–696. doi: 10.1016/S0981-9428(02)01410-9 CrossRefGoogle Scholar
  15. Hilling KW (2004) A chemotaxonomic analysis of terpenoid variation in cannabis. Biochem Syst Ecol 32:875–891. doi: 10.1016/j.bse.2004.04.004 CrossRefGoogle Scholar
  16. Howlett AC, Breivogel CS, Childers SR, Deadwyler SA, Hampson RE, Porrino LY (2004) Cannabinoid physiology and pharmacology: 30 years of progress. Neuropharmacol 47:345–358. doi: 10.1016/j.neuropharm.2004.07.030 CrossRefGoogle Scholar
  17. Jiang M, Zhang J (2001) Effect of Abscisic acid on active oxygen species, antioxidative defence system, and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42(11):1265–1273. doi: 10.1093/pcp/pce162 PubMedCrossRefGoogle Scholar
  18. Kang SM, Min JY, Kim YD, Park DJ, Jung HN, Karigar C et al (2006) Effect of supplementing terpenoid biosynthetic precursors on the accumulation of bilobalide and ginkgolides in Ginkgo biloba cell cultures. J Biotechnol 123:85–92PubMedCrossRefGoogle Scholar
  19. Kefu Z, Munns R, King RW (1991) Abscisic acid levels in NaCl treated barley, cotton, and saltbush. Aust J Plant Physiol 18:17–24CrossRefGoogle Scholar
  20. Keleo Y, Ünyayar S (2004) Responses of antioxidant defense system of Helianthus annuus to abscisic acid treatment under drought and water logging. Acta Physiol Plant 26(2):149–156. doi: 10.1007/s11738-004-0004-0 CrossRefGoogle Scholar
  21. Laule O, Furholz A, Chang HS, Zhu T, Wang X, Heifetz PB et al (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Plant Biol 100:6866–6871Google Scholar
  22. Lichtenthaler HK (1987) Chlorophylls and caretenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. doi: 10.1016/0076-6879(87)48036-1 CrossRefGoogle Scholar
  23. Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65. doi: 10.1146/annurev.arplant.50.1.47 PubMedCrossRefGoogle Scholar
  24. Lichtenthaler HK, Schwender J, Disch A, Rohmer M (2002) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. Planta 216:271–274Google Scholar
  25. Massei G, Watkins R, Hartley SE (2006) Sex-related growth and secondary compounds in Juniperus oxycedrus macrocarpa. Acta Oecologica 29:135–140CrossRefGoogle Scholar
  26. Mitchell DI, Cowan AK (2003) Mevastatin-induced inhibition of cell growth in avocado suspension cultures and reversal by isoprenoid compounds. Afr J Biotechnol 2(9):264–270Google Scholar
  27. Moore KB, Oishi KK (1993) Characterization of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity during maize seed development, germination, and seedling emergence. Plant Physiol 101:485–491PubMedGoogle Scholar
  28. Moore KB, Oishi KK (1994) 3-Hydroxy-3-methylglutaryl coenzyme A reductase activity in the endosperm of maize vivipary Mutants. Plant Physiol 105:119–125PubMedGoogle Scholar
  29. Munné-Bosch S, Falara V, Pateraki I, López-Carbonell M, Jana CJ, Kanellis AK (2009) Physiological and molecular responses of the isoprenoid biosynthetic pathway in a drought-resistant Mediterranean shrub, Cistus creticus exposed to water deficit. J Plant Physiol 166:136–145. doi: 10.1016/j.jplph.2008.02.011 PubMedCrossRefGoogle Scholar
  30. Munne-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162(7):743–748. doi: 10.1016/j.jplph.2005.04.022 PubMedCrossRefGoogle Scholar
  31. Munne-Bosch S, Alegre L (2000) Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 210:925–931. doi: 10.1007/s004250050699 PubMedCrossRefGoogle Scholar
  32. Panfili G, Fratianni A, Irano M (2003) Normal phase high-performance liquid method for the determination of tocopherols and tocotrienols in cereals. J Agric Food Chem 51:3940–3944. doi: 10.1021/jf030009v PubMedCrossRefGoogle Scholar
  33. Querol J, Besumbes O, Lois LM, Boronat A, Imperial S (2001) A fluorometric assay for the determination of 1-deoxy-d-xylulose 5-phosphate synthase activity. Anal Biochem 296:101–105. doi: 10.1006/abio.2001.5234 PubMedCrossRefGoogle Scholar
  34. Rodriguez-Concepcion M (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoids biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089. doi: 10.1104/pp.007138 PubMedCrossRefGoogle Scholar
  35. Rodriguez-Concepcion M (2006) Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells. Phytochem Rev 5:1–15. doi: 10.1007/s11101-005-3130-4 CrossRefGoogle Scholar
  36. Samet JS, Thomas R, Sinclair TR (1980) Leaf senescence and abscisic acid in leaves of field-grown soybean. Plant Physiol 66:1164–1168. doi: 10.1104/pp.66.6.1164 PubMedCrossRefGoogle Scholar
  37. Simontacchi M, Caro A, Fraga CG, Puntarulo S (1993) Oxidative stress affects α-tocopherol content in soybean embryonic axes upon imbibition and following germination. Plant Physiol 103:949–953PubMedGoogle Scholar
  38. Sirikantaramas S, Morimoto S, Shoyama Y, Ishikawa Y, Yoshiko Y, Shoyama Y et al (2004) The gene controlling marijuana psychoactivity molecular cloning and heterologous expression of tetrahydrocannabinolic acid synthase frome Cannabis sativa L. J Biol Chem 279:39767–39774. doi: 10.1074/jbc.M403693200 PubMedCrossRefGoogle Scholar
  39. Toroser D, Huber SC (1998) 3-Hydroxy-3-methylglutaryl-coenzyme A reductase kinase and sucrose–phosphate synthase kinase activities in cauliflower florets: Ca2+ dependence and substrate specificities. Arch Biochem Biophys 355:291–300. doi: 10.1006/abbi.1998.0740 PubMedCrossRefGoogle Scholar
  40. Tsai FY, Chi C, HueiKao C (1997) A comparative study of the effects of abscisic acid and methyl jasmonate on seedling growth of rice. Plant Growth Regul 21:37–42. doi: 10.1023/A:1005761804191 CrossRefGoogle Scholar
  41. Xie Z, Jiang D, Dai T, Jing Q, Cao W (2004) Effects of exogenous ABA and cytokinin on leaf photosynthesis and grain protein accumulation in wheat ears cultured in vitro. Plant Growth Regul 44:25–32. doi: 10.1007/s10725-004-1880-4 CrossRefGoogle Scholar
  42. Zhou B, Guo Z, Liu Z (2005) Effects of abscisic acid on antioxidant systems of Stylosanthes guianensis (Aublet) Sw. under chilling stress. Crop Sci 45:599–605CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of BiologyBahonar UniversityKermanIran
  2. 2.International Center for Science, High Technology, and Environmental Science (ICST)KermanIran
  3. 3.Department of BiotechnologyWroclaw UniversityWroclawPoland

Personalised recommendations