Plant Growth Regulation

, Volume 58, Issue 2, pp 173–179 | Cite as

Abscisic acid (ABA) inhibition of lateral root formation involves endogenous ABA biosynthesis in Arachis hypogaea L.

Original Paper


ABA has been found to play a significant role in post-embryonic developmental in peanut seedlings. The results from the current study indicate that in the presence of exogenous 10 μmol l−1 ABA, lateral roots (LRs) number decreased and seedling development was delayed. This effect was eliminated by 25 μmol l−1 naproxen, an inhibitor of ABA biosynthesis. The Arabidopsis mutant deficient in ABA biosynthesis, nced3, displays a phenotype with more and longer LRs. We found that ABA decreased root-branching in peanut in a dose-dependent way. ABA-treated seedlings showed higher endogenous ABA levels than the control and naproxen-treated seedlings. RT-PCR results indicated that the expression of AhNCED1, a key gene in the ABA biosynthetic pathway, was significantly up-regulated by exogenous ABA in peanut. The mRNA levels of AhNCED1 began to increase 2 days after ABA treatment. The results from the current study show that ABA inhibits peanut LR development by increasing endogenous ABA contents.


Abscisic acid Arachis hypogaea L. Lateral roots 9-cis-epoxycarotenoid dioxygenase (NCED) 



Abscisic acid


Lateral root




9-cis-epoxycarotenoid dioxygenase


Reverse transcription PCR


Half-strength Murashige and Skoog media



We thank Dr Jaime A. Teixeira da Silva and Dr. J. M Lin for their revision of the manuscript. This study was supported by the Natural Science Fund of Guangdong Province (8151063101000011) in P.R. China.


  1. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44. doi: 10.1038/nature03184 PubMedCrossRefGoogle Scholar
  2. Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171. doi: 10.1016/S1360-1385(03)00051-7 PubMedCrossRefGoogle Scholar
  3. Chen XM, Wang SS (1992) Quantitative analysis of ABA, IAA, and NAA in plant tissues by HPLC. Plant Physiol Commun 28:368–371Google Scholar
  4. Chen CW, Yang YW, Lur HS, Tsai YG, Chang MC (2006) A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol 47:1–13. doi: 10.1093/pcp/pci216 PubMedCrossRefGoogle Scholar
  5. De Smet I, Signora L, Beeckman T, Inzé D, Foyer CH, Zhang H (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555. doi: 10.1046/j.1365-313X.2003.01652.x PubMedCrossRefGoogle Scholar
  6. Deak KI, Malamy J (2005) Osmotic regulation of root system architecture. Plant J 43:17–28. doi: 10.1111/j.1365-313X.2005.02425.x PubMedCrossRefGoogle Scholar
  7. Evans ML, Ishikawa H, Estelle MA (1994) Responses of Arabidopsis roots to auxin studied with high temporal resolution: comparison of wild type and auxin-response mutants. Planta 194:215–222. doi: 10.1007/BF01101680 CrossRefGoogle Scholar
  8. Fitter AH (1991) Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 3–25Google Scholar
  9. Forde BG, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68. doi: 10.1023/A:1010329902165 CrossRefGoogle Scholar
  10. Han SY, Kitahata N, Sekimata K, Saito T, Kobayashi M, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K, Yoshida S, Asami T (2004) A novel inhibitor of 9-cis-epoxycarotenoid dioxygenase in abscisic acid biosynthesis in higher plants. Plant Physiol 135:1574–1582. doi: 10.1104/pp.104.039511 PubMedCrossRefGoogle Scholar
  11. Himanen K, Boucheron E, Vanneste S, de Almeida Engler J, Inzé D, Beeckman T (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14:2339–2351. doi: 10.1105/tpc.004960 PubMedCrossRefGoogle Scholar
  12. Lee HS, Milborrow BV (1997) Endogenous biosynthetic precursors of (+)-abscisic acid. IV. Biosynthesis of ABA from [2Hn] carotenoids by a cell-free system from avocado. Aust J Plant Physiol 24:715–726CrossRefGoogle Scholar
  13. Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13PubMedGoogle Scholar
  14. Malamy JE, Benfey PN (1997) Organization and cell differentiation in LRs of Arabidopsis thaliana. Development 124:33–44PubMedGoogle Scholar
  15. Murasige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  16. Reed RC, Brady SR, Muday GK (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118:1369–1378. doi: 10.1104/pp.118.4.1369 PubMedCrossRefGoogle Scholar
  17. Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in Arabidopsis root. Cell 99:463–472. doi: 10.1016/S0092-8674(00)81535-4 PubMedCrossRefGoogle Scholar
  18. Signora L, De Smet I, Foyer CH, Zhang H (2001) ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J 28:655–662. doi: 10.1046/j.1365-313x.2001.01185.x PubMedCrossRefGoogle Scholar
  19. Teale WD, Paponov IA, Ditengou F, Palme K (2005) Auxin and the developing root of Arabidopsis thaliana. Physiol Plant 123:130–138. doi: 10.1111/j.1399-3054.2005.00475.x CrossRefGoogle Scholar
  20. Verkest A, Weinl C, Inzé D, De Veylder L, Schnittger A (2005) Switching the cell cycle. Kip-related proteins in plant cell cycle control. Plant Physiol 139:1099–1106. doi: 10.1104/pp.105.069906 PubMedCrossRefGoogle Scholar
  21. Walch-Liu P, Ivanov II, Filleur S, Gan Y, Remans T, Forde BG (2006a) Nitrogen regulation of root branching. Ann Bot (Lond) 97:875–881. doi: 10.1093/aob/mcj601 CrossRefGoogle Scholar
  22. Walch-Liu P, Liu LH, Remans T, Tester M, Forde BG (2006b) Evidence that l-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol 47:1045–1057. doi: 10.1093/pcp/pcj075 PubMedCrossRefGoogle Scholar
  23. Wan XR, Li L (2006) Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene. Biochem Biophys Res Commun 347:1030–1038. doi: 10.1016/j.bbrc.2006.07.026 PubMedCrossRefGoogle Scholar
  24. Xiong L, Ishitani M, Lee H, Zhu JK (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13:2063–2083PubMedCrossRefGoogle Scholar
  25. Xiong L, Wang RG, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074. doi: 10.1104/pp.106.084632 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Guangdong Provincial Key Lab of Biotechnology for Plant DevelopmentCollege of Life Sciences, South China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations