Advertisement

Plant Growth Regulation

, 56:117 | Cite as

Isolation and characterization of the MiCel1 gene from mango: ripening related expression and enhanced endoglucanase activity during softening

  • Amita Chourasia
  • Vidhu A. Sane
  • Rajesh K. Singh
  • Pravendra Nath
Original Paper

Abstract

Fruit ripening is characterized by the progressive depolymerisation of cell wall polysaccharides of which the cellulose/hemicellulose network forms an important component. We have cloned an endo-β-1,4-glucanase (EGase) homologue, MiCel1 from ripening mango (Mangifera indica var. Dashehari) that shows sequence similarity to higher plant EGase genes. The 2.3 kb cDNA of MiCel1 encodes a putative protein of 619 amino acids with a signal peptide that can direct it to cell walls. It also possesses a cellulose binding domain that is characteristic of microbial endoglucanases. Expression of MiCel1 is fruit specific and ripening related. There is a progressive increase in MiCel1 transcript accumulation during ripening that is correlated with increased EGase activity and associated with decrease in cellulose/hemicellulose content. In control (ethylene untreated) and 1-MCP treated fruit, ripening was delayed by around 3 days. This is associated with a delayed increase in MiCel1 expression and a delayed increase in EGase activity. It is proposed that expression of MiCel1 is closely associated with ripening and may play an important role in mango softening.

Keywords

Endo-β-1,4-glucanase Ethylene Fruit Mangifera indica Ripening 1-MCP 

Notes

Acknowledgements

We are thankful to Central Institute for Subtropical Horticulture, Lucknow, for the mango samples. Senior Research Fellowship provided to Amita Chourasia by CSIR, India is gratefully acknowledged.

References

  1. Abu-Sarra AF, Abu-Goukh AA (1992) Changes in pectinesterase, polygalacturonase and cellulase activity during mango fruit ripening. J Hortic Sci 67:561–568Google Scholar
  2. Asif MH, Dhawan P, Nath PA (2000) Simple procedure for the isolation of high quality RNA from ripening banana fruit. Plant Mol Biol Rep 18:109–115. doi: 10.1007/BF02824018 CrossRefGoogle Scholar
  3. Bonghi C, Ferrarese L, Ruperti B, Tonutti P, Ramina A (1998) A endo-β-1,4-glucanases are involved in peach fruit growth and ripening and regulated by ethylene. Physiol Plant 102:346–352. doi: 10.1034/j.1399-3054.1998.1020302.x CrossRefGoogle Scholar
  4. Brinson K, Dey P, John M, Pridham J (1988) Post-harvest changes in Mangifera indica L. mesocarp cell walls and cytoplasmic polysaccharides. Phytochemistry 27:719–723. doi: 10.1016/0031-9422(88)84082-2 CrossRefGoogle Scholar
  5. Brummell DA (2006) Cell wall disassembly in ripening fruit. Funct Plant Biol 33:103–119. doi: 10.1071/FP05234 CrossRefGoogle Scholar
  6. Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–340. doi: 10.1023/A:1010656104304 PubMedCrossRefGoogle Scholar
  7. Brummell DA, Dal Cin V, Crisosto CH, Labavitch JM (2004) Cell wall metabolism during maturation, ripening and senescence of peach fruit. J Exp Bot 55:2029–2039. doi: 10.1093/jxb/erh227 PubMedCrossRefGoogle Scholar
  8. Cass LG, Kirven KA, Christoffersen RE (1990) Isolation and characterization of a cellulase gene family member expressed during avocado fruit ripening. Mol Gen Genet 223:76–86. doi: 10.1007/BF00315799 PubMedCrossRefGoogle Scholar
  9. Catala C, Bennett AB (1998) Cloning and sequence analysis of tomcel8; a new plant endo-beta-1,4-glucanase gene, encoding a protein with a putative carbohydrate binding domain (accession no. AF098292). Plant Physiol 118:1535Google Scholar
  10. Chourasia A, Sane VA, Nath P (2006) Differential expression of pectate lyase during ethylene-induced postharvest softening of mango (Mangifera indica var. Dashehari). Physiol Plant 128:546–555. doi: 10.1111/j.1399-3054.2006.00752.x CrossRefGoogle Scholar
  11. Christofersen RE, Tucker ML, Laties GG (1984) Cellulase gene expression in ripening avocado fruit: the accumulation of cellulase mRNA and protein as demonstrated by cDNA hybridization and immunodetection. Plant Mol Biol 3:385–391. doi: 10.1007/BF00033386 CrossRefGoogle Scholar
  12. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Biochem 28:350–356Google Scholar
  13. Durbin ML, Lewis LN (1988) Cellulases in Phaesolus vulgaris. Methods Enzymol 160:342–351. doi: 10.1016/0076-6879(88)60137-6 CrossRefGoogle Scholar
  14. Ferrarese L, Trainotti L, Moretto P, Polverino de Laureto P, Rascio N, Casadoro G (1995) Differential ethylene inducible expression of cellulase in pepper plants. Plant Mol Biol 29:735–747. doi: 10.1007/BF00041164 PubMedCrossRefGoogle Scholar
  15. Hayama H, Shimada T, Fujii H, Ito A, Kashimura Y (2006) Ethylene-regulation of fruit softening and softening-related genes in peach. J Exp Bot 57:4071–4077. doi: 10.1093/jxb/erl178 PubMedCrossRefGoogle Scholar
  16. Hisawa K, Kunigasa Y, Amano S, Hashimoto A, Nakano R, Inaba A et al (2003) Ethylene is required for both the initiation and progression of softening in pear (Pyrus communis L.) fruit. J Exp Bot 54:771–779. doi: 10.1093/jxb/erg073 CrossRefGoogle Scholar
  17. Lashbrook CC, Gonzalez-Bosch C, Bennett AB (1994) Two divergent endo-β-1,4-glucanase genes exhibit overlapping expression in ripening fruit and abscising flowers. Plant Cell 6:1485–1493PubMedCrossRefGoogle Scholar
  18. Libertini E, Li Y, McQueen-Mason SJ (2004) Phylogenetic analysis of the plant endo-β-1,4-glucanase gene family. J Mol Evol 58:506–515. doi: 10.1007/s00239-003-2571-x PubMedCrossRefGoogle Scholar
  19. Llop-Tous I, Dominguez-Puigjaner E, Palomer X, Vendrell M (1999) Characterization of two divergent endo-beta-1,4-glucanase cDNA clones highly expressed in the nonclimacteric strawberry fruit. Plant Physiol 119:1415–1421. doi: 10.1104/pp.119.4.1415 PubMedCrossRefGoogle Scholar
  20. Maclachlan G, Brady C (1994) Endo-β-1,4-glucanase, xyloglucanase and xyloglucan endo-transglucosylase activities versus potential substrates in ripening tomatoes. Plant Physiol 105:965–974PubMedGoogle Scholar
  21. Mølhøj M, Pagant S, Hofte H (2002) Towards understanding the role of membrane–bound endo-β-1,4-glucanases in cellulose biosynthesis. Plant Cell Physiol 43:1399–1406. doi: 10.1093/pcp/pcf163 PubMedCrossRefGoogle Scholar
  22. Muda P, Seymour GB, Errington N, Tucker GA (1995) Compositional changes in cell wall polymers during mango ripening. Carbohydr Polym 26:255–260. doi: 10.1016/0144-8617(95)00028-6 CrossRefGoogle Scholar
  23. Nishiyama K, Guis M, Rose JKC, Kubo Y, Bennett KA, Wangjin L et al (2007) Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon. J Exp Bot 58:1281–1290. doi: 10.1093/jxb/erl283 PubMedCrossRefGoogle Scholar
  24. O’Donoghue EM, Huber DJ, Timpa JD, Erdos GW, Brecht JK (1994) Influence of avocado (Persea Americana) Cx- cellulase on the structural features of avocado cellulose. Planta 194:573–584. doi: 10.1007/BF00714472 CrossRefGoogle Scholar
  25. Rose JKC, Catala C, Brummell DA, Lashbrook CC, Gonzalez Bosch C, Bennett AB (1997) The tomato endo-beta-1,4-glucanase gene family: regulation by both ethylene and auxin. In: Kanellis A, Chang C, Kende H, Grierson D (eds) Biology and biotechnology of the plant hormone ethylene, vol 34. Kluwer Academic Publishers, Boston, pp 197–205Google Scholar
  26. Rosli HG, Civello PM, Martinez GA (2004) Changes in cell wall composition of three Fragariax ananassa cultivars with different softening rate during ripening. Plant Physiol Biochem 42:823–831. doi: 10.1016/j.plaphy.2004.10.002 PubMedCrossRefGoogle Scholar
  27. Sambrook T, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory Press, Cold Spring HarbourGoogle Scholar
  28. Sane VA, Chourasia A, Nath P (2005) Softening in mango (Mangifera indica var Dashehari) is correlated with the expression of the ethylene responsive, ripening related expansin gene, MiExpA1. Post Harvest Biol Tech 38:223–230. doi: 10.1016/j.postharvbio.2005.07.008 CrossRefGoogle Scholar
  29. Suda CNK, Giorgini JF (2003) Multiple forms of endo-1,4-β-glucanases in the endosperm of Euphorbia heterophylla L. J Exp Bot 54:2045–2052. doi: 10.1093/jxb/erg229 PubMedCrossRefGoogle Scholar
  30. Trainotti L, Ferrarese F, Vecchia FD, Rascio N, Casadoro G (1999a) Two different endo-β-1,4-glucanase contribute to the softening of the strawberry fruits. J Plant Physiol 154:355–362Google Scholar
  31. Trainotti L, Spolaore S, Pavanello A, Baldan G, Casadoro G (1999b) A novel E-type endo-β (1,4)-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits. Plant Mol Biol 40:323–332. doi: 10.1023/A:1006299821980 PubMedCrossRefGoogle Scholar
  32. Trainotti L, Pavanello A, Zanin D (2006) PpEG4 is a peach endo-beta-1,4-glucanase gene whose expression in climacteric peaches does not follow a climacteric pattern. J Exp Bot 57:589–598. doi: 10.1093/jxb/erj043 PubMedCrossRefGoogle Scholar
  33. Urbanowicz BR, Catala C, Irwin D, Wilson DB, Ripoll DR, Rose JKC (2007) A tomato endo-β-1,4-glucanase, SlCel9C1, represents a distinct subclass with a new family of carbohydrate binding modules (CBM49). J Biol Chem 282:12066–12074. doi: 10.1074/jbc.M607925200 PubMedCrossRefGoogle Scholar
  34. Woolley LC, James J, Manning K (2001) Purification and properties of an endo 1,4-β-glucanase from strawberry and downregulation of the corresponding gene Cel1. Planta 214:11–21PubMedCrossRefGoogle Scholar
  35. Yashoda HM, Prabha TN, Tharanathan RN (2006) Mango ripening: changes in cell wall constituents in relation to textural softening. J Sci Food Agric 86:713–721. doi: 10.1002/jsfa.2404 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Amita Chourasia
    • 1
  • Vidhu A. Sane
    • 1
  • Rajesh K. Singh
    • 1
  • Pravendra Nath
    • 1
  1. 1.Plant Gene Expression LabNational Botanical Research InstituteLucknowIndia

Personalised recommendations