Skip to main content
Log in

Sulphur protects mustard (Brassica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione

Sulphur protects mustard from cadmium toxicity

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In a pot-soil culture ameliorative effect of sulphur (S) (0 or 40 mg S kg−1 soil) on cadmium (Cd) (0, 25, 50 and 100 mg Cd kg−1 soil)-induced growth inhibition and oxidative stress in mustard (Brassica campestris L.) cultivar Pusa Gold was studied. Cadmium at 100 mg kg−1 soil caused maximum increase in the contents of Cd and thiobarbituric acid reactive substances (TBARS) in leaves. Maximum reductions in growth (plant dry mass, leaf area), chlorophyll content, net photosynthetic rate (PN) and the contents of ascorbate (AsA), glutathione (GSH) were observed with 100 mg Cd kg−1 soil compared to control. The application of S helped in reducing Cd toxicity, which was greater for 25 and 50 mg Cd kg−1 soil) compared to 100 mg Cd kg−1 soil. Addition of S to Cd-treated plants showed decrease in Cd and TBARS content in leaves and restoration of growth and photosynthesis through increase in the contents of AsA and GSH. Net photosynthetic rate and plant dry mass were strongly and positively correlated with the contents of AsA and GSH. It is suggested that S may ameliorate Cd toxicity and protects growth and photosynthesis of mustard involving AsA and GSH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AsA:

Ascorbate

Cd:

Cadmium

Chl:

Chlorophyll

DW:

Dry weight

DAS:

Days after sowing

DTNB:

5′,5′-Dithiobis-2-nitrobenzoic acid

DTT:

1,4-dithiothreitol

EDTA:

Ethylene diamine tetraacetate

FW:

Fresh weight

GR:

Glutathione reductase

GSH:

Glutathione

NPT:

Non-protein thiol

PN :

Net photosynthetic rate

PCs:

Phytochelatins

ROS:

Reactive oxygen species

TBARS:

Thiobarbituric acid reactive substances

References

  • Ahmad A, Khan I, Anjum NA, Diva I, Abrol YP, Iqbal M (2005) Effect of timing of sulphur fertilizer application on growth and yield of rapeseed (Brassica campestris L.). J Plant Nutr 28:1049–1059

    Article  CAS  Google Scholar 

  • Anderson ME (1985) Determination of glutathione and glutathione disulfides in biological samples. Meth Enzymol 113:548–570

    Article  PubMed  CAS  Google Scholar 

  • Anjum NA, Umar S, Ahmad A, Iqbal M (2007a) Responses of components of antioxidant system in moongbean [Vigna radiata (L.) Wilczek] genotypes to cadmium stress. Commun Soil Sci Plant Anal (in press)

  • Anjum NA, Umar S, Iqbal M, Khan NA (2007b) Growth stage variation of the response to cadmium toxicity in Brassica campestris L. J Plant Interact. doi:1080/17429140171823164

  • Anjum NA, Umar S, Singh S, Nazar R, Khan NA (2008) Sulphur assimilation and cadmium tolerance in plants. In: Khan NA, Singh S, Umar S (eds) Abiotic stress and sulphur assimilation in plants. Springer-Verlag, Berlin, pp 271–302

    Chapter  Google Scholar 

  • Arvind P, Prasad MNV (2005) Cadmium and zinc interactions in a hydroponic system using Ceratophylum demersum L.: adaptive ecophysiology, biochemistry and molecular toxicology. Braz J Plant Physiol 17:3–20

    Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, El-Ferjani E (1997) Cadmium and zinc induction of lipid: lipid peroxidation and antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162

    Article  PubMed  CAS  Google Scholar 

  • Chien HF, Lin CC, Wang JW, Chen CT, Kao CH (2002) Changes in ammonium ion content and glutamine synthetase activity in rice leaves caused by excess cadmium are a consequence of oxidative damage. Plant Growth Regul 36:41–47

    Article  CAS  Google Scholar 

  • Cobbett CS (2000a) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS (2000b) Phytochelatin biosynthesis and function in heavy metal detoxification. Curr Opin Plant Biol 3:211–216

    PubMed  CAS  Google Scholar 

  • Dhindsa RH, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence correlated with increased level of membrane permeability, lipid per oxidation and decreased level of SOD and CAT. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential oxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  PubMed  CAS  Google Scholar 

  • Douglas KT (1987) Mechanism of action of glutathione-dependent enzymes. In: Meister A (ed) Advances in enzymology. John-Wiley, New York, pp 103–167

    Chapter  Google Scholar 

  • Ernst WHO (1998) Sulphur metabolism in higher plants: potential for phytoremediation. Biodegradation 9:311–318

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH (1993) Ascorbic acid. In: Alscher RG, Hess JL (eds) Antioxidants in higher plants. CRC Press, Boca Raton, pp 31–58

    Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Freedman JH, Ciriolo MR, Peisach J (1989) The role of glutathione in copper metabolism and toxicity. J Biol Chem 264:5598–5605

    PubMed  CAS  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159

    Article  CAS  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatins: the principal heavy metal complexing peptides of higher plants. Science 230:674–676

    Article  PubMed  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hancock RD, Viola R (2005) Biosynthesis and catabolism of L-ascorbic acid in plants. Crit Rev Plant Sci 24:167–188

    Article  CAS  Google Scholar 

  • Hassan JM, Wang Z, Zhang G (2005) Sulphur alleviates growth inhibition and oxidative stress caused by cadmium toxicity in rice. J Plant Nutr 28:1785–1800

    Article  CAS  Google Scholar 

  • Hiscox JH, Israelstam GF (1979) A method for extraction of chlorophyll from leaf tissues without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227–238

    Article  CAS  Google Scholar 

  • Inouhe M (2005) Phytochelatins. Braz J Plant Physiol 17:65–78

    Article  CAS  Google Scholar 

  • Kang YJ, Enger MD (1987) Effect of cellular glutathione depletion on cadmium-induced cytotoxicity in human lung carcinoma cells. Cell Biol Toxicol 3:347–360

    Article  PubMed  CAS  Google Scholar 

  • Khan NA, Samiullah, Singh S, Nazar R (2007) Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J Agron Crop Sci 193:435–444

    Article  CAS  Google Scholar 

  • Kunert KJ, Foyer CH (1993) Thiol/disulphide exchange in plants. In: De Kok LJ (ed) Sulphur nutrition and assimilation in higher plants. SPB Academic Publishing. The Hague, The Netherlands, pp 139–151

    Google Scholar 

  • Law ME, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts: the effect of hydrogen peroxide and of paraquat. Biochem J 210:899–903

    PubMed  CAS  Google Scholar 

  • May MJ, Vernoux T, Leaver C, Van-Montagu M, Inze D (1998a) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649–667

    Article  CAS  Google Scholar 

  • May MJ, Vernoux T, Sanchez-Fernandez R, Van Montagu M, Inze D (1998b) Evidence for posttranscriptional activation of γ-glutamylcysteine synthetase during plant stress responses. Proc Natl Acad Sci USA 95:12049–12054

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin MJ, Parker DR, Clarke JM (1999) Metals and micronutrients: food safety issues. Field Crops Res 60:143–163

    Article  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    PubMed  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathy RD, Govindaranjan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monieri L. Plant Physiol Biochem 44:25–37

    Article  PubMed  CAS  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  PubMed  CAS  Google Scholar 

  • Nikiforova V, Freitag J, Kempa S, Adamik M, Hesse H, Hoefgen R (2003) Transcriptome analysis of sulphur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J 33:633–650

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Gomez LA, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, comparmentation and transport in the control of glutathione homeostasis and signaling. J Exp Bot 53:1283–1304

    Article  PubMed  CAS  Google Scholar 

  • Ozturk L, Eker S, Ozkutlu F, Cakmak I (2003) Effect of cadmium on growth and concentrations of cadmium, ascorbic acid and sulfhydril groups in durum wheat cultivars. Turk J Agric Forest 27:161–168

    CAS  Google Scholar 

  • Qadir S, Qureshi MI, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:1171–1181

    Article  CAS  Google Scholar 

  • Rausch T, Wachter A (2005) Sulphur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–509

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides: structure, biosynthesis and function. Plant Physiol 109:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Kurosawa M, Tatsuguchi K, Takagi Y, Murakoshi I (1994) Modulation of cysteine biosynthesis in the chloroplasts of transgenic tobacco overexpressing cysteine synthses [O-acetylserine(thiol)lyase]. Plant Physiol 106:887–895

    Article  PubMed  CAS  Google Scholar 

  • Sharma SS, Kaul S, Metwally A, Goyal KC, Finkemeier I, Deitz KJ (2004) Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status. Plant Sci 166:1287–1295

    Article  CAS  Google Scholar 

  • Singh S, Anjum NA, Khan NA, Nazar R (2008) Metal-binding peptides and antioxidant defence system in plants: significance in cadmium tolerance. In: Khan NA, Singh S (eds) Abiotic stress and plant responses. IK International, New Delhi, pp 159–189

    Google Scholar 

  • Singhal RK, Anderson ME, Meister A (1987) Glutathione, a first line defence against cadmium toxicity. FASEB J 1:220–223

    PubMed  CAS  Google Scholar 

  • Thangavel P, Long S, Minocha R (2007) Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension culture under cadmium and zinc stress. Plant Cell Tissue Organ Cult 88:201–216

    Article  CAS  Google Scholar 

  • Wagner G (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–211

    CAS  Google Scholar 

  • Wu FB, Zhang GP (2002) Alleviation of cadmium-toxicity by application of zinc and ascorbic acid in barley. J Plant Nutr 25:2745–2761

    Article  CAS  Google Scholar 

  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    Article  PubMed  CAS  Google Scholar 

  • Zhang GP, Motohiro F, Hitoshi S (2002) Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Res 77:93–99

    Article  Google Scholar 

  • Zhao FJ, Evans EJ, Bilsborrow PE, Syers JK (1993) Influence of S and N on seed yield and quality of low glucosinolate oilseed rape (Brassica napus L.). J Sci Food Agric 63:29–37

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are indebted to Dr. R. K. Katiyar, Director, National Research Centre on Plant Biotechnology (NRCPB) of the Indian Agricultural Research Institute (IARI), New Delhi, India for providing authentic seeds of mustard for the study. The first author is obliged to Hamdard National Foundation, New Delhi, India for financial assistance in the form of Research Fellowship (DSW/HNF-18/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser A. Anjum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anjum, N.A., Umar, S., Ahmad, A. et al. Sulphur protects mustard (Brassica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione. Plant Growth Regul 54, 271–279 (2008). https://doi.org/10.1007/s10725-007-9251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-007-9251-6

Keywords

Navigation