Plant Growth Regulation

, Volume 49, Issue 1, pp 49–60 | Cite as

In vitro Culture of Medicago arborea L. Anthers: Initial Response

  • Itziar Lanas
  • Piedad Gallego
  • Luisa Martin
  • Javier Fernandez
  • Angel Alonso
  • Juana Elena-Rosello
  • Antonio Blazquez
  • Nieves Villalobos
  • Hilario Guerra


High production of viable somatic embryos was obtained from cultured anthers in the second phase of meiosis, using microscopic level observations of tetrads. The medium with the greatest embryogenic efficiency was H6, composed of Murashige and Skoog (MS) medium with 2 mg l−1 of 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg l−1 of kinetin. All (100%) of the somatic embryos obtained germinated and produced 63% green and 37% albino seedlings. In general, embryogenic calli had a higher ion concentration than non-embryogenic calli, with the exception of calcium whose concentration was higher in non-embryogenic calli. The calli induced in the different media differed in their sucrose and starch compositions. The most embryogenic medium H6-induced calli with the highest sucrose concentration and the lowest starch concentration, before visible embryos were observed. In the leaves of the albino seedlings, sucrose concentrations were very high while those of starch were very low. Ion concentrations were also lower in albino plants than in the leaves of green seedlings, with the exception of calcium, whose concentration was higher. Most of the albino individuals were homozygous, even when their progenitors were heterozygous, thereby confirming their haploid nature.


Ions Medicago arborea L. subsp. arborea Seedlings Somatic embryos Starch Sucrose 



2,4-dichlorophenoxyacetic acid


dry weight




indole-butyric acid


isocitrate dehydrogenases




leucin aminopeptidases


malate dehydrogenases


menadione reductases


1-naphthalene acetic acid




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacilieri, R., Labbe, T., Kremer, A. 1994Intraspecific genetics structure in a mixed population of Quercus petraea (Matt.) Leibl and Q. robur LHeredity73130141CrossRefGoogle Scholar
  2. Bishnoi, U.S., Jain, R.K., Gupta, R., Chowdhury, V.K., Chowdhury, J.B. 2000High frequency androgenesis in indica × Basmati rice hybrids using liquid culture mediaPlant Cell Tiss. Org. Cult.61153159CrossRefGoogle Scholar
  3. Bouvier, L., Guerif, P.H., Djulbic, M., Durel, C.H.E., Chevreau, E., Lespinasse, Y. 2002Chromosome doubling of pear haploid plants and homozygosity assessment using isozyme and microsatellite markersEuphytica123255262CrossRefGoogle Scholar
  4. Branca, C., Trolley, A., Firm, P., Altamura, M.M., Bassi, M. 1994Early phases in vitro culture of tomato cotyledons: starch accumulation and protein pattern in relation to the hormonal treatmentProtoplasma1825964CrossRefGoogle Scholar
  5. Chu, C., Wang, C., Sun, C., Hsu, C., Yin, K., Chu, C. 1975Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sourcesSci. Sin.18659668Google Scholar
  6. Di-Vaio, C., Petito, A., Buccheri, M. 2001Effect of girdling on gas exchanges and leaf mineral content in the ‘independence’ nectarineJ. Plant Nutr.2410471060CrossRefGoogle Scholar
  7. Duncan, D.B. 1955Multiple range and multiple F testsBiometrics11142CrossRefGoogle Scholar
  8. Elena-Roselló, J.A., LLumaret, R., Cabrera, E., Michaud, H. 1992Evidence for hybridation between sympatric holm-oak and cork-oak in Spain bases on diagnostic enzyme markersVegetatio99/100115118CrossRefGoogle Scholar
  9. Elena-Roselló, J.A., Cabrera, E. 1996Isozyme variation in natural populations of cork-oak (Quercus suber L.). Population structurediversity, differentiation and gene flowSilvae Genetica45229235Google Scholar
  10. Elkonin, L.A., Pakhomova, N.V. 1997Phosphate as an efficient stimulator of somatic embryogenesis in sorghum tissue cultureInt. Sorghum Millets Newsl38101102Google Scholar
  11. Gallego, P., Hita, O., Villalobos, N., Dorado, A., Martin, L., Guerra, H. 2001Somatic embryogenesis and plant regeneration with Medicago arborea L. plantletsIn vitro Cell. Dev. Biol.37199203CrossRefGoogle Scholar
  12. Gamborg, O.L., Miller, P.A., Ojima, K. 1968Nutrient requirements of suspension cultures of soybean root cellsExp. Cell. Res.50151158PubMedCrossRefGoogle Scholar
  13. Gordon, A.J., Ryle, G.J.A., Mitchell, D.F., Lowry, K.H., Powell, C.E. 1986The effect of defoliation on carbohydrateprotein and Leg-Haemoglobin content of white clover nodulesAnn. Bot.58141154Google Scholar
  14. Jain, A.K., Sarkar, A., Datta, R.K. 1996Induction of haploid callus and embryogenesis in vitro cultured anthers of mulberry (Morus indica) Plant Cell Tissue Org. Cult.44143147CrossRefGoogle Scholar
  15. Kiss, G.B., Csanádi, G., Kálmán, K., Kaló, P., Ökrész, L. 1990Construction of a basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markersMol. Genet. Genom.238129137Google Scholar
  16. La Cour, L.F. 1954Smear and squash techniques in plant cytologyLab. Pract.3326330Google Scholar
  17. Lee, S.Y., Cheong, J.I., Kim, T.S. 2003Production of doubled haploids through anther culture of M1 rice plants derived from mutagenized fertilized egg cellsPlant Cell Rep.22218223PubMedCrossRefGoogle Scholar
  18. Lesins, K.A., Lesins, I. 1979Medicago arboreaJunk, W. eds. Genus Medicago (Leguminosae). A Taxogenetic StudyKluwerBoston130133Google Scholar
  19. Lichter, R. 1981Anther culture of Brassica napus rape in a liquid culture mediumZ. Pflanzenphysiol.103229237Google Scholar
  20. Linhart, Y.B. 1988Ecological and evolutionary studies of Ponderosa pine in the Rocky MountainsBaumgartner, D.M.Lotan, J.E. eds. Ponderosa Pine: The Species and its Management. Cooperative ExtensiónWashington State UniversityPullman, WAGoogle Scholar
  21. Liu, W., Zheng, M.Y., Konzak, C.F. 2002Improving green plant production via isolated microspore culture in bread wheat (Triticum aestivum L.)Plant Cell Rep.20821824CrossRefGoogle Scholar
  22. Martín, A.B., Cuadrado, Y., Guerra, H., Gallego, P., Hita, O., Martín, L., Dorado, A., Villalobos, N. 2000Differences in the contents of total sugars, reducing sugars, starch and sucrose in embryogenic and non-embryogenic calli from Medicago arborea LPlant Sci.154143151PubMedCrossRefGoogle Scholar
  23. Medina, M., Villalobos, N., la Cruz, P.J., Dorado, A., Guerra, H. 1998Effect of culture medium and lighting conditions on the morphological characteristics and carbohydrate contents of Medicago strasseri calliActa Physiol. Plant.20383392CrossRefGoogle Scholar
  24. Muller-Starck, G., Jorgensen, J. 1991Enzyme gene markers as indicators of the initial ploidy in anther cultures of treesCan. J. For. Res.2111411144CrossRefGoogle Scholar
  25. Murashige, T., Skoog, F. 1962A revised medium for rapid growth and bioassays with tobacco tissue culturesPhysiol. Plant.15473497CrossRefGoogle Scholar
  26. Nguyen, S.T., Paquin, R. 1971Méthodes d’extraction et de purification des acides aminés libres et des protéines de tissus végétauxJ. Chromatogr.61349351CrossRefGoogle Scholar
  27. Nichols, E.A., Ruddle, F.H. 1973A review of enzyme polymorphismlinkage and electrophoretic conditions for mouse and somatic cell hybrids in starch gelsJ. Histochem. Cytochem.2110661081PubMedGoogle Scholar
  28. Nitsch, J.P., Nitsch, C. 1969Haploid plants from pollen grainsScience1638587PubMedCrossRefGoogle Scholar
  29. Paek, K.Y., Canderlerdy, S., Thorpe, A. 1988Physiological effects of Na2SO4NaCl on callus cultures of Brassica campestris (Chinese cabbage)Physiol. Plant72160166CrossRefGoogle Scholar
  30. Panaia, M., Senaratna, T., Bunn, E., Dixon, K.W., Sivasithamparam, K. 2000Micropropagation of the critically endangered Western Australian species, Symonanthus bancroftii (F. Muell.) L. Haegi (Solanaceae)Plant Cell Tissue Organ Cult.632329CrossRefGoogle Scholar
  31. Pasteur N., Pasteur G., Bonhomme F., Catalan J. and Britton-Davidian J. 1987. Manuel technique de genetique par electrophorese des proteines. Technique et Documentation (Lavoisier), Montpellier, 217 pp.Google Scholar
  32. Peng, M., Wolyn, D.J. 1999Improved callus formation and plant regeneration for shed microspore culture in asparagus (Asparagus officinalis L.)Plant Cell Rep.18954958CrossRefGoogle Scholar
  33. Pérez, C. 2001Técnicas Estadísticas con SPSSPrentice HallMadrid357404Google Scholar
  34. Rasco-Gaunt, S., Riley, A., Barcelo, P., Lazzeri, P.A. 1999Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissuesPlant Cell Rep.19118127CrossRefGoogle Scholar
  35. Sadiq, M., Abdurrehman, W.A. 1999Elemental composition of alfalfa leaves and its relation to soil composition and irrigation water quality in the Eastern Province of Saudi ArabiaJ. Plant Nutr.2212691278CrossRefGoogle Scholar
  36. Scandalious, J.G. 1969Genetic control of multiple molecular forms of enzymes in plants: a reviewBiochem. Genet.33779CrossRefGoogle Scholar
  37. Selander, R.K., Smith, M.M., Yang, S.Y., Johnson, W.E., Gentry, J.B. 1971Biochemical polimorphism in the genus Peromyscus. I. Variation of the old-field mouseStud. Genet. Univ. Texas71034990Google Scholar
  38. Shanmughavel, P., Sha, L., Zheng, Z., Cao, M. 2001Nutrient cycling in a tropical seasonal rain forest of ZishuangbannaSouthwest China. 1. Tree species: nutrient distribution and uptakeBioresour. Technol.80163170PubMedCrossRefGoogle Scholar
  39. Shaw, C.R., Prasad, R. 1970Starch gel electrophoresis of enzymes a compilation of recipesBiochem. Genet.4297320PubMedCrossRefGoogle Scholar
  40. Talbott, L.D., Zeiger, E. 1998The role of sucrose in guard cell osmoregulationJ. Exp. Bot.49329337CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Itziar Lanas
    • 1
  • Piedad Gallego
    • 1
  • Luisa Martin
    • 2
  • Javier Fernandez
    • 3
  • Angel Alonso
    • 4
  • Juana Elena-Rosello
    • 1
  • Antonio Blazquez
    • 5
  • Nieves Villalobos
    • 1
  • Hilario Guerra
    • 1
  1. 1.Departamento de Fisiología Vegetal, Facultad de Biología y FarmaciaUniversidad de SalamancaSalamancaSpain
  2. 2.Laboratorio de Fisiología Vegetal, Facultad de Biología y Escuela Técnica Superior de Ingenieros AgrónomosUniversidad Complutense y Politécnica de MadridMadridSpain
  3. 3.Departamento de Botánica, Facultad de BiologíaUniversidad de SalamancaSalamancaSpain
  4. 4.Departamento de Química Analítica, Facultad de QuímicasUniversidad de SalamancaSpain
  5. 5.Departamento de Estadística, Facultad de Economía y EmpresaUniversidad de SalamancaSpain

Personalised recommendations