Plant Growth Regulation

, Volume 46, Issue 2, pp 109–115 | Cite as

Rhodococcus fascians: Shoot Proliferation without Elevated Cytokinins?

  • Ivan Galis
  • Kristin Bilyeu
  • Geraldine Wood
  • Paula E. Jameson


In order to determine whether the disease symptoms caused by virulent strains of Rhodococcus fascians are due to increased cytokinin activity in infected tissues, germinating peas (Pisum sativum cv Novella) were inoculated with either a virulent strain or a nonvirulent strain of Rhodococcus fascians. The nonvirulent strain lacked both the ipt gene and the putative cytokinin oxidase/dehydrogenase homologue, fas5. Control peas were not inoculated. Twelve cytokinins were isolated from pea shoots 3, 6 and 9 days post-inoculation. Within 6 days of inoculation the levels of cytokinin free bases, ribosides, O-glucosides and nucleotides were decreased in shoots inoculated with the virulent strain, and were increased in shoots inoculated with the nonvirulent strain relative to the uninoculated control. The results are discussed with respect to the classic Skoog and Miller (1965) model of organogenesis and to the possible involvement of the plant cytokinin oxidase/dehydrogenase during infection by virulent strains of R. fascians.


Cytokinin Cytokinin oxidase/dehydrogenase Cytokinin synthase ipt Plant pathogen interactions Rhodococcus fascians 



cytokinin oxidase/dehydrogenase


dihydrozeatin riboside






iP nucleotides (iP 5′ ribotides)


isopentenyl transferase




zeatin riboside


zeatin riboside O-glucoside


dihydro ZROG


Z nucleotides (Z 5′ ribotides)


dihydro ZNT


zeatin 9-glucoside nucleotide


dihydro Z9GNT.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bilyeu, K.D., Cole, J.L., Laskey, J.G., Riekhof, W.R., Esparza, T.J., Kramer, M.D., Morris, R.O. 2001Molecular and biochemical characterization of a cytokinin oxidase from maizePlant Physiol.125378386CrossRefPubMedGoogle Scholar
  2. 2.
    Comai, L., Surico, G., Kosuge, T. 1982Relation of plasmid DNA to indoleacetic acid production in different strains of Pseudomonas syringae pv savastanoiJ. Gen. Microbiol.12821572163Google Scholar
  3. 3.
    Cornelis, C., Ritsema, T., Nijsse, J., Holsters, M., Goethals, K., Jaziri, M. 2001The plant pathogen Rhodococcus fascians colonizes the exterior and interior of the aerial parts of plantsMPMI14599608PubMedGoogle Scholar
  4. 4.
    Crespi, M., Messens, E., Caspian, A.B., van Montagu, M., Desomer, J. 1992Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase geneEMBO J.11795804PubMedGoogle Scholar
  5. 5.
    Crespi, M., Vereecke, D., Temmerman, W., van Montagu, M., Desomer, J. 1994The fas operon of Rhodococcus fascians encodes new genes required for efficient fasciation of host plantsJ. Bacteriol.17624922501PubMedGoogle Scholar
  6. 6.
    Eason, J.R., Jameson, P.E., Bannister, P. 1995Virulence assessment of Rhodococcus fascians strains on pea cultivarsPlant Pathol.44141147Google Scholar
  7. 7.
    Eason, J.R., Morris, R.O., Jameson, P.E. 1996The relationship between virulence and cytokinin production by Rhodococcus fascians (Tilford 1936) Goodfellow 1984Plant Path.45323331CrossRefGoogle Scholar
  8. 8.
    Eklof, S., Astot, C., Blackwell, J., Moritz, T., Olsson, O., Sandberg, G. 1997Auxin-cytokinin interactions in wild-type and transgenic tobaccoPlant Cell Physiol.38225235Google Scholar
  9. 9.
    Galis I., Bilyeu K.D., Godinho M. and Jameson P.E. 2005. Expression of three Arabidopsis cytokinin oxidase promoter:GUS chimeric constructs in tobacco: response to developmental and biotic factors. Plant Growth Regul. 45: 173–182.Google Scholar
  10. 10.
    Goethals, K., Vereecke, D., Jaziri, M., van Montagu, M., Holsters, M. 2001Leafy gall formation by Rhodococcus fasciansAnnu. Rev. Phytopathol.392752CrossRefPubMedGoogle Scholar
  11. 11.
    Houba-Hérin, N., Pethe, C., dȁ9Alayer, J., Laloue, M. 1999Cytokinin oxidase from Zea mays: purification, cDNA cloning and expression in moss protoplastsPlant J.17615626CrossRefPubMedGoogle Scholar
  12. 12.
    Jameson, P.E. 2000Cytokinins and auxins in plant-pathogen interactions - an overviewPlant Growth Regul.32369380CrossRefGoogle Scholar
  13. 13.
    Jameson, P.E., Zhang, H., Lewis, D.H. 2000Cytokinins: extraction, separation and analysisRoberts, J.Tucker, G. eds. Methods in Molecular BiologyPlant Hormone ProtocolsNottingham101121Google Scholar
  14. 14.
    Kado, C.I., Heskett, M.G. 1970Selective media for isolation of AgrobacteriumCorynebacteriumErwiniaPseudomonasXanthomonasPhytopathology60969976PubMedGoogle Scholar
  15. 15.
    Klämbt, D., Thies, G., Skoog, F. 1966Isolation of cytokinins from Corynebacterium fasciansProc. Natl. Acad. Sci. USA565259PubMedGoogle Scholar
  16. 16.
    Lawson, E.N., Gantotti, B.V., Starr, M.P. 1982A 78-megadalton plasmid occurs in avirulent strains as well as virulent strains of Cornebacterium fasciansMicrobiology7327332Google Scholar
  17. 17.
    Lewis, D.H., Burge, G.K., Schmierer, D.M., Jameson, P.E. 1996Cytokinins and fruit development in the kiwifruit (Actinidia deliciosa) I. Changes during fruit developmentPhysiol. Plant.98179186CrossRefGoogle Scholar
  18. 18.
    Lichter, A., Manulis, S., Sagee, O., Gafni, Y., Gray, J., Meilan, R., Morris, R.O., Barash, I. 1995Production of cytokinins by Erwinia herbicola pv gypsophilaeisolation of a locus conferring cytokinin biosynthesisMPMI8114121Google Scholar
  19. 19.
    MacDonald E.M.S., Powell G.K., Regier D.A., Glass N.L., Roberto F., Kosuge T. and Morris R.O. 1986. Secretion of zeatin, ribosylzeatin, and ribosyl-100-methylzeatin by Pseudomonas savastanoi. Plant Physiol. 82: 742–747.Google Scholar
  20. 20.
    Manes, C.-L. de O., van Montagu, M., Prinsen, E., Goethals, K., Holsters, M. 2001De novo cortical cell division triggered by the phytopathogen Rhodococcus fascians in tobaccoMol. Plant-Microbe Interact.9373381Google Scholar
  21. 21.
    Manulis, S., Valinsky, L., Gafni, Y., Hershenhorn, J. 1991Indole-3-acetic acid biosynthetic pathways in Erwinia herbicola in relation to pathogenicity on Gypsophila paniculataPhysiol. Mol. Plant Pathol.39161171CrossRefGoogle Scholar
  22. 22.
    Morris, R.O., Bilyeu, K.D., Leskey, J.G., Cheikh, N.N. 1999Isolation of a gene encoding a glycosylated cytokinin oxidase from maizeBiochem. Biophys. Res. Comm.255328333CrossRefPubMedGoogle Scholar
  23. 23.
    Morris, R.O. 1987Molecular aspects of hormone synthesis and action – genes specifying auxin and cytokinin biosynthesis in prokaryotesDavies, P.J. eds. Plant HormonesKluwer Academic PublishersDordrecht318339Google Scholar
  24. 24.
    Murai, N., Skoog, F., Doyle, M.E., Hanson, R.S. 1980Relationships between cytokinin production, presence of plasmids, and fasciation caused by strains of Cornebacterium fasciansProc. Natl. Acad. Sci.77619623Google Scholar
  25. 25.
    Skoog, F., Miller, C.O. 1965Chemical regulation of growth and organ formation in plant tissues cultured in vitroBell, E. eds. Molecular and Cellular Aspects of DevelopmentHarper and RowNew York481 494Google Scholar
  26. 26.
    Stange, R.R., Jeffares, D., Young, C., Scott, D.B., Eason, J.R., Jameson, P.E. 1996PCR amplification of the fas-1 gene for the detection of virulent strains of Rhodococcus fasciansPlant Pathol.45407417CrossRefGoogle Scholar
  27. 27.
    Werner, T., Hanus, J., Holub, J., Schmülling, T., van Onckelen, H., Strnad, M. 2003New cytokinin metabolites in ipt transgenic Arabidopsis thaliana plantsPhysiol. Plant.118127137CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Ivan Galis
    • 1
    • 2
  • Kristin Bilyeu
    • 3
  • Geraldine Wood
    • 1
  • Paula E. Jameson
    • 1
    • 4
  1. 1.Institute of Molecular BioSciences, College of SciencesMassey UniversityPalmerston NorthNew Zealand
  2. 2.RIKEN Plant Science CenterTsurumi-kuJapan
  3. 3.USDA/ARSUniversity of MissouriColumbia USA
  4. 4.School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations