Plant Growth Regulation

, Volume 45, Issue 1, pp 63–73 | Cite as

Carbohydrates as regulatory factors on the rooting of Eucalyptus saligna Smith and Eucalyptus globulus Labill

  • Luciano da Rocha Corrêa
  • Daniel Cristiano Paim
  • Joséli Schwambach
  • Arthur Germano Fett-Neto


Comparisons between related species with different rooting capacities can provide insights into the mechanisms controlling adventitious root development. The availability of carbohydrates is often considered exclusively as an energetic requirement to drive root development; the major regulatory role in the process is often attributed to phytohormones, particularly auxin. The roles of light quantity (irradiance) and carbohydrate supply available to young aseptic donor-plants on the adventitious rooting response of Eucalyptus globulus (rooting recalcitrant) and Eucalyptus saligna (easy-to-root) were examined. The effects of the type of carbohydrate supply (sucrose or glucose) on the rooting response of cuttings was also evaluated. Light intensity supplied to mother-plants (30 or 60 μmol m−2 s−1) had limited influence on the rooting response of both species, whereas dark periods were detrimental, particularly for E. globulus. In E. globulus, rooting was promoted by the absence of sucrose in donor-plant media. Presence of sucrose in donor plant medium promoted root number but did not affect rooting percentage of E. saligna. A positive effect of glucose on cutting rhizogenesis was found if this hexose was supplied during the root induction phase, followed by sucrose in the root formation step, especially for E. globulus. The same effect was not seen with fructose. The beneficial effect of glucose in the induction phase on root number was also evident under suboptimal auxin concentrations.


Carbohydrate Eucalyptus Glucose Irradiance Propagation Rooting Sucrose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett, I.J., McDavid, D.A.J., McComb, J.A. 2003The influence of ammonium nitratepH and indole butyric acid on root induction and survival in soil of micropropagated Eucalyptus globulusBiol. Plant.47355360Google Scholar
  2. Benz, J.S., Midmore, D.J., Keller, E.R. 1996Planting materials for warm tropic potato production: mother-plant management for the production of rooted cuttingsTrop. Agric.73292300Google Scholar
  3. Borisjuk, L., Walenta, S., Weber, H., Mueller-Klieser, W., Wobus, U. 1998High-resolution histographical mapping of glucose concentrations in developing cotyledons of Vicia faba in relation to mitotic activity and storage processes: glucose as a possible developmental triggerPlant J.15583591Google Scholar
  4. Calamar, A., De Klerk, G.-J. 2002Effect of sucrose on adventitious root regeneration in applePlant Cell Tiss. Org. Cult.70207212Google Scholar
  5. Cheng, B., Peterson, C.M., Mitchell, R.J. 1992The role of sucroseauxin and explant source on in vitro rooting of seedling explants of Eucalyptus sideroxylonPlant Sci.87207214Google Scholar
  6. Klerk, G.-J., Brugge, J.T., Marinova, S. 1997Effectiveness of indolacetic acidindolebutyric acid and naphthaleneacetic acid during adventitious root formation in vitro in Malus ‘Jork’Plant Cell Tiss. Org. Cult.493944Google Scholar
  7. Klerk, G.-J., Der Krieken, W., De Jong, J.C. 1999The formation of adventitious roots: new concepts, new possibilitiesIn Vitro Cell. Dev. Biol-Pl.35189199Google Scholar
  8. Klerk, G.-J. 2002Rooting of microcuttings: theory and practiceIn Vitro Cell. Dev. Biol-Pl.38415422Google Scholar
  9. Fett-Neto, A.G., Fett, J.P., Goulart, L.W.V., Pasquali, G., Termignoni, R.R., Ferreira, A.G. 2001Distinct effects of auxin and light on adventitious root development in Eucalyptus saligna and Eucalyptus globulusTree Physiol21457464Google Scholar
  10. Ford, Y.Y., Taylor, J.M., Blake, P.S., Marks, T.R. 2002Gibberellin A3 stimulates adventitious rooting of cuttings from cherry (Prunus avium)Plant Growth Regul.37127133Google Scholar
  11. Hoad, S.P., Leakey, R.R.B. 1996Effects of pre-severance light quality on the vegetative propagation of Eucalyptus grandis W. Hill ex MaidenTrees10317324Google Scholar
  12. Kevers, C., Hausman, J.F., Faivre-Rampant, O., Evers, D., Gaspar, T. 1997Hormonal control of adventitious rooting: progress and questionsAngew. Bot.717179Google Scholar
  13. Labouriau, L.G., Osborn, J.H. 1984Temperature dependence of the germination of tomato seedsJ. Therm. Biol.9285294Google Scholar
  14. León, P., Sheen, J. 2003Sugar and hormone connectionsTrend. Plant. Sci.8110116Google Scholar
  15. Ludwig-Müller, J. 2000Indole-3-butyric acid in plant growth and developmentPlant Growth Regul.32219230Google Scholar
  16. McClelland, M.T., Smith, M.A.L., Carothers, J.B. 1990The effects of in vitro and ex vitro root initiation on subsequent microcutting root quality in three woody plantsPlant Cell Tiss. Org.23115123Google Scholar
  17. Morelli, G., Ruberti, I. 2002Light and shade in the photocontrol of Arabidopsis growthTrend. Plant Sci.7399404Google Scholar
  18. Moncousin, C., Ribaux, M., O’Rourke, J., Gavillet, S. 1992Effects of type of carbohydrate during proliferation and rooting of microcuttings of Malus Jork 9Agronomie12775781Google Scholar
  19. Murashige, T., Skoog, F. 1962A revised medium for rapid growth and bioassays with tobacco culturesPhysiol. Plant.15473497Google Scholar
  20. Pagnussat, G.C., Lanteri, M.L., Lombardo, M.C., Lamattina, L. 2004Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root developmentPlant Physiol.135279286Google Scholar
  21. Pawlicki, N., Welander, M. 1995Influence of carbohydrate sourceauxin concentration and time of exposure on adventitious rooting of the apple rootstock Jork 9Plant Sci.106167176Google Scholar
  22. Sheen, J. 1990Metabolic repression of transcription in higher plantsPlant Cell210271038CrossRefPubMedGoogle Scholar
  23. Sheen, J., Zhou, L., Jang, J.-C. 1999Sugars as signaling moleculesCurr. Opin. Plant Biol.2410418Google Scholar
  24. Wassner, D., Ravetta, D. 2000Vegetative propagation of Grindelia chiloensis (Asteraceae)Ind. Crop Prod.11710Google Scholar
  25. Wilson, P.J. 1998Environmental preferences of Eucalyptus globulus stem cuttings in one nurseryNew Zeal. J. For. Sci.28304315Google Scholar
  26. Wilson, P.J. 1999The growth and form of potted mother plants of Eucalyptus globulus Labill. ssp. globulus in relation to the rooting ability of stem cuttingsJ. Hortic. Sci. Biotech.74645650Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Luciano da Rocha Corrêa
    • 1
  • Daniel Cristiano Paim
    • 1
  • Joséli Schwambach
    • 2
  • Arthur Germano Fett-Neto
    • 1
    • 2
  1. 1.Departamento de Botânica, Laboratório de Fisiologia Vegetal, Programa de Pós-Graduação em BotânicaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Centro de Biotecnologia (Programa de Pós-Graduação em Biologia Celular e Molecular)UFRGSPorto AlegreBrazil

Personalised recommendations