Advertisement

Plant Growth Regulation

, Volume 44, Issue 1, pp 81–86 | Cite as

Isolation and identification of blue light-induced growth inhibitor from light-grown Arabidopsis shoots

  • Tsuyoshi Hasegawa
  • Kosumi Yamada
  • Hideyuki Shigemori
  • Nobuharu Goto
  • Kensuke Miyamoto
  • Junichi Ueda
  • Koji Hasegawa
Article

Abstract

Phototropic stimulation of dark-grown hypocotyls of Arabidopsis thaliana increased a growth inhibitor in the wild-type but not in the non-phototropic nph3-101 mutant. From light-grown wild-type shoots the inhibitor was isolated and identified as indole-3-acetonitrile (IAN) from its 1H NMR spectrum. The content of endogenous IAN in the hypocotyls of wild-type and mutant unilaterally exposed to blue light was determined using a physicochemical assay. The IAN concentration (28 μM) in the phototropically stimulated wild-type hypocotyls was about three times larger than in the dark control. However, its content in the mutant hypocotyls did not change. IAN inhibited the hypocotyl growth of the nph3-101 to the same extent as in the wild-type at concentrations higher than 10 μM. These results suggest that IAN plays a role in the phototropism of Arabidopsis thaliana hypocotyls.

Arabidopsis thaliana (Heynh.) Blue light-induced growth inhibitor Hypocotyl Indole-3-acetonitrile Nph3-101 mutant Phototropism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad M., Jarillo J.A., Smirnova O. and Cashmore A.R. 1998. Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism. Nature 392:720–723.Google Scholar
  2. Albagli O., Dhordain P., Deweindt C., Lecocq G. and Leprince D. 1995.The BTB/POZ domain:a new protein-protein interaction motif common to DNA-and actin-binding pro-teins. Cell Growth Differ. 6:1193–1198.Google Scholar
  3. Aravind L. and Koonin E.V. 1999. Fold prediction and evolutionary analysis of the POZ domain:structural and evolutionary relationship with the potassium channel tetramerization domain. J.Mol.Biol. 285:1353–1361.Google Scholar
  4. Briggs W.R., Beck C.F., Cashmore A.R., Christie J.M., Hughes J., Jarillo J.A., Kagawa T., Kanegae H., Liscum E., Nagatani A., Okada K., Salomon M., Rudiger W., Sakai T., Takano M., Wada M. and Watson J.C. 2001. The phototropin family of photoreceptors. Plant Cell 13:993–997.Google Scholar
  5. Bruinsma J. and Hasegawa K. 1990. A new theory of photot-ropism -its regulation by a light-induced gradient of auxin-inhibiting substances. Physiol. Plant. 79:700–704.Google Scholar
  6. Bruinsma J., Karssen C.M., Benschop M. and van Dort J.B. 1975. Hormonal regulation of phototropism in the light-grown sunflower seedlings, Helianthus annuus L.:immobility of endogenous indoleacetic acid and inhibition of hypocotyl growth by illuminated cotyledons. J. Exp. Botany 26:411–418.Google Scholar
  7. Franssen J.M., Cooke S.A., Digby J. and Firn R.D. 1981. Measurements of differential growth causing phototropic curvature of coleoptiles and hypocotyls. Z. Pflanzenphysiol. 103:207–216.Google Scholar
  8. Hasegawa K., Noguchi H., Tanoue C., Sando S., Takada M., Sakoda M. and Hashimoto T. 1987. Phototropism in hy-pocotyls of radish IV.Flank growth and lateral distribution of cis-and trans-raphanusanins in the first positive photo-tropic curvature. Plant Physiol. 85:379–382.Google Scholar
  9. Hasegawa K. and Yamada K.1992. Even distribution of endogenous indole-3-acetic acid in phototropism of pea epi-cotyls. J. Plant Physiol. 139: 455–459.Google Scholar
  10. Hasegawa T., Yamada K., Kosemura S., Yamamura S. and Hasegawa K. 2000. Phototropic stimulation induces the conversion of glucosinolate to phototropism-regulating sub-stances of radish hypocotyls. Phytochemistry 54:275–279.Google Scholar
  11. Hasegawa T., Yamada K., Shigemori H., Miyamoto K., Ueda J. and Hasegawa K. 2004. Isolation and identification of phototropism-regulating substances benzoxazinoids from maize coleoptiles. Heterocycles (in press).Google Scholar
  12. Hoshi-Sakoda M., Usui K., Ishizuka K., Kosemura S., Yamamura S. and Hasegawa K. 1994. Structure-activity relationships of benzoxazolinones with respect to auxin-in-duced growth and auxin-binding protein. Phytochemistry 37: 297–300.Google Scholar
  13. Kosemura S., Niwa K., Emori H., Yokotani-Tomita K., Ha-segawa K. and Yamamura S. 1997. Light-induced auxin-inhibiting substance from cabbage (Brassica oleacea L.) shoots. Tetrahedron Lett. 38:8327–8330.Google Scholar
  14. Liscum E. and Briggs W.R. 1995. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7:473–485.Google Scholar
  15. Lupas A.1996. Coiled coils:new structure and new functions. Trends Biochem. Sci. 21:375–382.Google Scholar
  16. Okada K. and Shimura Y.1992. Mutational analysis of root gravitropism and phototropism of Arabidopsis thaliana seedlings. Aust. J. Plant Physiol. 19:439–448.Google Scholar
  17. Sakai T., Wada M., Ishiguro S. and Okada K. 2000. RPT2:a signal transducer of the phototropic response in Arabidopsis. Plant Cell 12:225–236.Google Scholar
  18. Sakoda M., Matsuoka T., Sando S. and Hasegawa K. 1988. Phototropism in hypocotyls of radish V.Lateral distribution of cis-and trans-raphanusanins and raphanusamide in vari-ous phototropisms induced by unilateral broad blue light. J. Plant Physiol. 133:110–112.Google Scholar
  19. Yamamura S. and Hasegawa K. 2001. Chemistry and biology of phototropism-regulating substances in higher plants. Chemical Record 1:362–372.Google Scholar
  20. Yokotani-Tomita K., Kato J., Yamada K., Kosemura S., Yamamura S., Bruinsma J. and Hasegawa K. 1999. 8-Epix-anthatin, a light-induced growth inhibitor, mediates the phototropic curvature in sunflower (Helianthus annuus L.) hypocotyls. Physiol. Plant. 106:326–330.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Tsuyoshi Hasegawa
    • 1
  • Kosumi Yamada
    • 1
  • Hideyuki Shigemori
    • 1
  • Nobuharu Goto
    • 2
  • Kensuke Miyamoto
    • 3
  • Junichi Ueda
    • 3
  • Koji Hasegawa
    • 1
  1. 1.Institute of Applied BiochemistryUniversity of TsukubaJapan
  2. 2.Department of Biology, MiyagiUniversity of EducationJapan
  3. 3.College of Integrated Arts & SciencesOsaka Prefecture UniversityJapan

Personalised recommendations