Journal of Grid Computing

, Volume 14, Issue 4, pp 619–640 | Cite as

Enabling Workflow-Oriented Science Gateways to Access Multi-Cloud Systems



In this paper we present a solution to cloud-enable workflow-oriented science gateways. The integration mechanism described in the paper is a generic method that can be followed by other gateway developers. The paper describes the principles and the concrete ways to integrate science gateways with multi-cloud systems. The concrete example to demonstrate the integration principles builds on the integration of WS-PGRADE/gUSE and the CloudBroker Platform (CBP). The integration of WS-PGRADE and the CloudBroker Platform offers a complete cloud-enabled science gateway platform for a diverse set of use-cases and user communities, with the availability to use mainstream cloud middleware types and services (Amazon, IBM, OpenStack, OpenNebula). The advantage of the integrated WS-PGRADE and CloubBroker Platform system is that if a domain-specific science gateway is customized from WS-PGRADE gateway framework it immediately inherits this cloud access flexibility, i.e. the user community of that gateway can access all the cloud types enabled by the integrated system presented.


Cloud Workflow Science gateway 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
    Foster, I., Kesselman, C.: The grid: Blueprint for a new computing infrastructure. Morgan kaufmann publishers ISBN 1-55860-475-8 (1999)Google Scholar
  4. 4.
  5. 5.
    Ellert, M., et al.: Advanced Resource connector middleware for lightweight computational grids. Future Generation Comput. Syst. 23, 219–240 (2007)CrossRefGoogle Scholar
  6. 6.
    Foster, I.: Globus toolkit version 4: Software for Service-Oriented systems. IFIP international conference on network and parallel computing, Springer-Verlag LNCS 3779, 2–13 (2005)Google Scholar
  7. 7.
    David, P.: Anderson: Public Computing: Reconnecting People to Science. Conference on Shared Knowledge and the Web. Residencia de Estudiantes, Madrid, Spain (2003)Google Scholar
  8. 8.
    Kacsuk, P.: P-GRADE portal family for grid infrastructures. Concurrency and Computation: Practice and Experience Special Issue: IWPLS 2009 23(3), 235–245 (2011)Google Scholar
  9. 9.
    SP 800-145: The NIST Definition of Cloud Computing (September 2011). doi: 10.6028/NIST.SP.800-145
  10. 10.
    Balaskó, Á.: Workflow Concept of WS-PGRADE/gUSE. In: Science Gateways for Distributed Computing Infrastructures: Development Framework and Exploitation by Scientific User Communities. doi: 10.1007/978-3-319-11268-83, pp. 33–50 (2014)
  11. 11.
    Amazon EC2. (2016)
  12. 12.
    IBM Cloud Computing. (2016)
  13. 13.
  14. 14.
    OpenStack. (2016)
  15. 15.
    OpenNebula. (2016)
  16. 16.
    Eucalyptus. (2016)
  17. 17.
    The CloudBroker Platform. (2016)
  18. 18.
    OGSAJSDL specification. (2016)
  19. 19.
    Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., Bhagat, J., Belhajjame, K., Bacall, F., Hardisty, A., Hidalga, A.N., Vargas, M.P., Sufi, S., Goble, C.: Balcazar The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud, Nucleic Acids Research. doi: 10.1093/nar/gkt328 (2013)
  20. 20.
    De Roure, D., Goble, C., Stevens, R.: The design and realisation of the myExperiment virtual research environment for social sharing of workflows. Futur. Gener. Comput. Syst. 25, 561–567 (2009). doi: 10.1016/j.future.2008.06.010
  21. 21.
    Missier, P., Soiland-Reyes, S., Owen, S., Tan, W., Nenadic, A., Dunlop, I., Williams, A., Oinn, T., Goble, C.: Taverna, reloaded. in scientific and statistical database management. Lect. Notes Comput. Sci. 6187, 471–481 (2010)CrossRefGoogle Scholar
  22. 22.
    Deelman, E., Singh, G., Sa, M., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Berriman, G., Good, J., Laity, A., Jacob, J., Katz, D.: Pegasus: a framework for mapping complex scientific workflows onto distributed systems. Sci. Program 13(3), 219–237 (2005)Google Scholar
  23. 23.
    Ludascher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E., Tao, J., Zhao, Y.: Scientific Workflow Management and the Kepler System. Concurrency and Computation: Practice & Experience (2005)Google Scholar
  24. 24.
    Kozlovszky, M., et al.: DCI Bridge: Executing WS-PGRADE Workflows in Distributed Computing Infrastructures. In: Science Gateways for Distributed Computing Infrastructures: Development Framework and Exploitation by Scientific User Communities, pp 51–67 (2014). doi: 10.1007/978-3-319-11268-84
  25. 25.
    Hajnal, Á., Márton, I., Farkas, Z., Kacsuk, P.: Remote storage management in science gateways via data bridging. Concurrency Comput.: Pract. Experience 27(16), 4398–4411 (2015)CrossRefGoogle Scholar
  26. 26.
    Kacsuk, P. (ed.): Science Gateways for Distributed Computing Infrastructures. Springer International Publishing. doi: 10.1007/978-3-319-11268-8 (2014)
  27. 27.
    Liferay Portal. (2016)
  28. 28.
    OGSA-BES specification. (2016)
  29. 29.
    Balaskó, Á., Farkas, Z., Kacsuk, P.: Building Science Gateways by Utilizing the Generic WS-PGRADE/gUSE Workflow System. Comput. Sci. J. 14, 2 (2013)Google Scholar
  30. 30.
    Kacsuk, P, Farkas, Z, Kozlovszky, M, Hermann, G, Balasko, A, Karoczkai, K, Marton, I: WS-PGRADE/GUSE Generic DCI Gateway Framework for a Large Variety of User Communities. J. Grid Comput. 10(4), 601–630 (2012)CrossRefGoogle Scholar
  31. 31.
    WS-PGRADE/gUSE documentation. (2016)
  32. 32.
    MTASZTAKI Autodock Gateway. (2015)
  33. 33.
    Berendsen, H.J.C., van der Spoel, D., van Drunen, R.: GROMACS: A message-passing parallel molecular dynamics implementation. In: Computer Physics Communications, Volume 91, Issues 1–3, 2 September 1995, Pages 43-56. doi: 10.1016/0010-4655(95)00042-E
  34. 34.
    Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J. Comput. Chem. 2009(16), 2785–91 (2009)CrossRefGoogle Scholar
  35. 35.
    McLennan, M., Clark, S., McKenna, F., Deelman, E., Rynge, M., Vahi, K., Kearney, D.: Carol Song: Bringing Scientific Workflow to the Masses via Pegasus and HUBzero. Proceedings of IWSG’2013Google Scholar
  36. 36.
    McLennan, M., Kennell, R.: HUBzero: A Platform for Dissemination and Collaboration in Computational Science and Engineering. Comput. Sci. Eng. 12(2), 48–52 (2010)CrossRefGoogle Scholar
  37. 37.
    Maddineni, S., Kim, J., El-Khamra, Y., Jha, S.: Distributed Application Runtime Environment (DARE): A Standards-based Middleware Framework for Science-Gateways. J. Grid Comput. 10, 647–664 (2012). doi: 10.1007/s10723-012-9244-1
  38. 38.
  39. 39.
    De Roure, D., Goble, C., Stevens, R.: The Design and Realisation of the myExperiment Virtual Research Environment for Social Sharing of Workflows. Futur. Gener. Comput. Syst. 25, 561–567 (2009)CrossRefGoogle Scholar
  40. 40.
    Goecks, J., Nekrutenko, A., Taylor, J.: Galaxy Team: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11(8), 86 (2010)CrossRefGoogle Scholar
  41. 41.
    Pierce, M., Marru, S., Singh, R., Kulshrestha, A., Muthuraman, K.: Open Grid Computing Environments: Advanced Gateway Support Activities, Proceedings of the 2010 TeraGrid Conference, TG ’10, Pp. 16:1-16:9. ACM, New York (2010)Google Scholar
  42. 42.
    Amaral, R., et al.: EU-Brazil Open Data And Cloud Computing e-Infrastructure for Biodiversity, IWSG’2013, Proceedings of the 5th International Workshop on Science Gateways, Zurich, Switzerland (2013)Google Scholar
  43. 43.
    Kacsuk, P. (ed.): Science Gateways for Distributed Computing Infrastructures: Development Framework and Exploitation by Scientific User Communities, Springer, 2014. pp. 301. (ISBN:978-3-319-11267-1)Google Scholar
  44. 44.
  45. 45.
    Taylor, S.J.E., Kiss, T., Terstyanszky, G., Kacsuk, P., Fantini, N.: Cloud Computing for Simulation in Manufacturing and Engineering: Introducing the CloudSME Simulation Platform. Proceedings of the 2014 Annual Simulation Symposium, ANSS ’14, Society for Computer Simulation International: San Diego, CA, USA, 2014; 12:1–12:8Google Scholar
  46. 46.
    Farkas, Z., Kacsuk, P., Hajnal, A.: Connecting Workflow-Oriented Science Gateways to Multi-cloud Systems. In: Science Gateways (IWSG), 2015 7th International Workshop on vol., no., pp.40–46, 3–5. doi: 10.1109/IWSG.2015.20 (2015)
  47. 47.
    Ardizzone, V., Barbera, R., Calanducci, A., et al.: The DECIDE science gateway. J. Grid Comput. 10, 689 (2012). doi: 10.1007/s10723-012-9242-3
  48. 48.
    Costa, A., Massimino, P., Bandieramonte, M., et al.: An innovative science gateway for the cherenkov telescope array. J. Grid Comput. 13, 547 (2015). doi: 10.1007/s10723-015-9330-2
  49. 49.
    Grunzke, R., Krüger, J., Jäkel, R., et al.: Metadata Management in the moSGrid Science Gateway - Evaluation and the Expansion of Quantum Chemistry Support J Grid Computing. doi: 10.1007/s10723-016-9362-2 (2016)
  50. 50.
    Gugnani, S., Blanco, C., Kiss, T., et al.: Extending science gateway frameworks to support big data applications in the cloud j grid computing. doi: 10.1007/s10723-016-9369-8 (2016)

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.MTA SZTAKIBudapestHungary

Personalised recommendations