Journal of Grid Computing

, Volume 11, Issue 4, pp 633–651 | Cite as

Budget-Deadline Constrained Workflow Planning for Admission Control

  • Wei Zheng
  • Rizos Sakellariou


In this paper, we assume an environment with multiple, heterogeneous resources, which provide services of different capabilities and of a different cost. Users want to make use of these services to execute a workflow application, within a certain deadline and budget. The problem considered in this paper is to find a feasible plan for the execution of the workflow which would allow providers to decide whether they can agree with the specific constraints set by the user. If they agree to admit the workflow, providers can allocate services for its execution in a way that both deadline and budget constraints are met while account is also taken of the existing load in the provider’s environment (confirmed reservations from other users whose requests have been accepted). A novel heuristic is proposed and evaluated using simulation with four different real-world workflow applications.


Admission control Bi-criteria DAG scheduling SLA-based resource reservation Workflow planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almeida, J., Almeida, V., Ardagna, D., Cunha, I.: Joint admission control and resource allocation in virtualized servers. J. Parallel Distrib. Comput. 70(4), 344–362 (2010)CrossRefMATHGoogle Scholar
  2. 2.
    Annis, J., Zhao, Y., Voeckler, J., Wilde, M., Kent, S., Foster, I.: Applying chimera virtual data concepts to cluster finding in the sloan sky survey. In: Proceedings of the 2002 ACM/IEEE Conference on SuperComputing, pp. 56–69 (2002)Google Scholar
  3. 3.
    Berriman, G.B., Good, J.C., Laity, A.C., Bergou, A., Jacob, J., Katz, D.S., Deelman, E., Kesselman, C., Singh, G., Su, M.H., Williams, R.: Montage: a Grid enabled image mosaic service for the national virtual observatory. In: the Conference Series of Astronomical Data Analysis Software and Systems XIII (ADASS XIII), pp. 593–596 (2004)Google Scholar
  4. 4.
    Broberg, J., Venugopal, S., Buyya, R.: Market-oriented Grids and utility computing: the state-of-the-art and future directions. J. Grid Comput. 6(3), 255–276 (2008)CrossRefGoogle Scholar
  5. 5.
    Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: an overview of workflow system features and capabilities. Future Gener. Comput. Syst. 25, 528–540 (2009)CrossRefGoogle Scholar
  6. 6.
    Deelman, E., Kesselman, C., Mehta, G., Meshkat, L., Pearlman, L., Blackburn, K., Ehrens, P., Lazzarini, A., Williams, R., Koranda, S.: GriPhyN and LIGO, building a virtual data Grid for gravitational wave scientists. In: High Performance Distributed Computing (HPDC 02), pp. 225–234 (2002)Google Scholar
  7. 7.
    Dǒgan, A., Özgüner, R.: Biobjective scheduling algorithms for execution time-reliability trade-off in heterogeneous computing systems. Comput. J. 48(3), 300–314 (2005)CrossRefGoogle Scholar
  8. 8.
    Fard, H.M., Prodan, R., Barrionuevo, J.J.D., Fahringer, T.: A multi-objective approach for workflow scheduling in heterogeneous environments. In: CCGRID, pp. 300–309. IEEE (2012)Google Scholar
  9. 9.
    Garg, S.K., Buyya, R., Siegel, H.J.: Scheduling parallel applications on utility Grids: time and cost trade-off management. In: 32nd Australasian Computer Science Conference (ACSC 2009), vol. 91, pp. 139–147 (2009)Google Scholar
  10. 10.
    Garg, S.K., Buyya, R., Siegel, H.J.: Time and cost trade-off management for scheduling parallel applications on utility Grids. Future Gener. Comput. Syst. 26(8), 1344–1355 (2010)CrossRefGoogle Scholar
  11. 11.
    Garg, S.K., Konugurthi, P., Buyya, R.: A linear programming driven genetic algorithm for meta-scheduling on utility Grids. In: Proceedings of the 16th International Conference on Advanced Computing and Communication (ADCOM 2008), pp. 493–517 (2008)Google Scholar
  12. 12.
    Gkoutioudi, K., Karatza, H.D.: Multi-criteria job scheduling in Grid using an accelerated genetic algorithm. J. Grid Comput. 10(2), 311–323 (2012)CrossRefGoogle Scholar
  13. 13.
    Han, Y., Youn, C.: A new Grid resource management mechanism with resource-aware policy administrator for SLA-constrained applications. Future Gener. Comput. Syst. 25(7), 768–778 (2009)CrossRefGoogle Scholar
  14. 14.
    Hiles, A.: Service Level Agreements: Measuring Cost and Quality in Service Relationships. Chapman & Hall (1993)Google Scholar
  15. 15.
    Horn, J.V., Dobson, J., Woodward, J., Wilde, M., Zhao, Y., Voeckler, J., Foster, I.: Grid-based computing and the future of neuroscience computation. In: Methods in Mind, pp. 141–170. MIT Press (2006)Google Scholar
  16. 16.
    Juve, G., Deelman, E., Berriman, G.B., Berman, B.P., Maechling, P.: An evaluation of the cost and performance of scientific workflows on amazon ec2. J. Grid Comput. 10(1), 5–21 (2012)CrossRefGoogle Scholar
  17. 17.
    Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Cost- and deadline-constrained provisioning for scientific workflow ensembles in iaas clouds. In: Hollingsworth, J.K. (ed.) SC, p. 22. IEEE/ACM (2012)Google Scholar
  18. 18.
    Mills, K.L., Dabrowski, C.: Can economics-based resource allocation prove effective in a computation marketplace? J. Grid Comput. 6(3), 291–311 (2008)CrossRefGoogle Scholar
  19. 19.
    Prodan, R., Wieczorek, M.: Bi-criteria scheduling of scientific Grid workflows. IEEE Trans. Autom. Sci. Eng. 7, 364–376 (2010)CrossRefGoogle Scholar
  20. 20.
    Prodan, R., Wieczorek, M.: Negotiation-based scheduling of scientific Grid workflows through advance reservations. J. Grid Comput. 8(4), 493–510 (2010)CrossRefGoogle Scholar
  21. 21.
    Quan, D.M.: Mapping heavy communication workflows onto Grid resource within SLA context. In: Proceedings of the International Conference of High Performance Computing and Communication (HPCC06), pp. 727–736 (2006)Google Scholar
  22. 22.
    Quan, D.M., Kao, O.: Mapping Grid job flows to Grid resources within SLA context. In: Proceedings of the European Grid Conference (EGC2005), pp. 1107–1116 (2005)Google Scholar
  23. 23.
    Risch, M., Altmann, J., Guo, L., Fleming, A., Courcoubetis, C.: The GridEcon platform: a business scenario testbed for commercial cloud services. In: Altmann, J., Buyya, R., Rana, O.F. (eds.) GECON 2009, Lecture Notes in Computer Science, vol. 5745, pp. 46–59. Springer (2009)Google Scholar
  24. 24.
    Sakellariou, R., Zhao, H.: A hybrid heuristic for DAG scheduling on heterogeneous systems. In: Proceedings of the 13th Heterogeneous Computing Workshop (2004)Google Scholar
  25. 25.
    Sakellariou, R., Zhao, H., Tsiakkouri, E., Dikaiakos, M.D.: Scheduling workflows with budget constraints. In: Gorlatch, S., Danelutto, M. (eds.) Integrated Research in GRID Computing, pp. 189–202. Springer (2007)Google Scholar
  26. 26.
    Schneider, J., Linnert, B.: Efficiently managing advance reservations using lists of free blocks. In: SBAC-PAD, pp. 183–190. IEEE Computer Society (2011)Google Scholar
  27. 27.
    Siddiqui, M., Villazon, A., Fahringer, T.: Grid capacity planning with negotiation-based advance reservation for optimized QoS. In: Proceedings of the 2006 IEEE/ACM Conference in Supercomputing (SC2006), pp. 103–118 (2006)Google Scholar
  28. 28.
    Sih, G.C., Lee, E.A.: A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures. IEEE Trans. Parallel Distrib. Syst. 4(2), 175–187 (1993)CrossRefGoogle Scholar
  29. 29.
    Singh, G., Kesselman, C., Deelman, E.: A provisioning model and its comparison with best-effort for performance-cost optimiazation in Grids. In: Proceedings of the 16th International Symposium on High Performance Distributed Computing, pp. 117–126 (2007)Google Scholar
  30. 30.
    Su, S., Li, J., Huang, Q., Huang, X., Shuang, K., Wang, J.: Cost-efficient task scheduling for executing large programs in the cloud. Parallel Comput. (2013). doi: 10.1016/j.parco.2013.03.002; url:
  31. 31.
    Talukder, A.K.M., Kirley, M., Buyya, R.: Multi-objective differential evolution for scheduling workflow applications on global Grids. Concurr. Comput. Pract. Exp. 21(13), 1742–1756 (2009)CrossRefGoogle Scholar
  32. 32.
    Topcuoglu, H., Hariri, S., Wu, M.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002)CrossRefGoogle Scholar
  33. 33.
    Wieczorek, M., Hoheisel, A., Prodan, R.: Taxonomies of the multi-criteria Grid workflow scheduling problem. In: Proceedings of the CoreGRID Workshop on Grid Middleware, pp. 237–264 (2007)Google Scholar
  34. 34.
    Wieczorek, M., Siddiqui, M., Villazón, A., Prodan, R., Fahringer, T.: Applying advance reservation to increase predictability of workflow execution on the Grid. In: e-Science, p. 82. IEEE Computer Society (2006)Google Scholar
  35. 35.
    Yeo, C.S., Buyya, R.: Managing risk of inaccurate runtime estimates for deadline constrained job admission control in clusters. In: Proceedings of the 35th International Conference on Parallel Processing (ICPP2006), pp. 451–458 (2006)Google Scholar
  36. 36.
    Yin, J., Wang, Y., Hu, M., Wu, C.: Predictive admission control algorithm for advance reservation in equipment Grid. In: Proceedings of IEEE International Conference on Service Computing (SCC08), pp. 49–56 (2008)Google Scholar
  37. 37.
    Yu, J., Buyya, R.: Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms. Sci. Program. 14, 217–230 (2006)Google Scholar
  38. 38.
    Yu, J., Buyya, R.: Multi-objective planning for workflow execution on Grids. In: Proceedings of the 8th IEEE/ACM International Conference on Grid Computing, pp. 10–17 (2007)Google Scholar
  39. 39.
    Zhao, H., Sakellariou, R.: Advance reservation policies for workflows. In: 12th Workshop on Job Scheduling Strategies for Parallel Processing (2006)Google Scholar
  40. 40.
    Zheng, W., Sakellariou, R.: Budget-deadline constrained workflow planning for admission control in market-oriented environments. In: Vanmechelen, K., Altmann, J., Rana, O.F. (eds.) GECON, Lecture Notes in Computer Science, vol. 7150, pp. 105–119. Springer (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Information Science and TechnologyXiamen UniversityXiamenChina
  2. 2.School of Computer ScienceUniversity of ManchesterManchesterUK

Personalised recommendations