Advertisement

Journal of Grid Computing

, Volume 9, Issue 2, pp 201–218 | Cite as

A Science Driven Production Cyberinfrastructure—the Open Science Grid

  • Mine Altunay
  • Paul Avery
  • Kent Blackburn
  • Brian Bockelman
  • Michael Ernst
  • Dan Fraser
  • Robert Quick
  • Robert Gardner
  • Sebastien Goasguen
  • Tanya Levshina
  • Miron Livny
  • John McGee
  • Doug Olson
  • Ruth Pordes
  • Maxim Potekhin
  • Abhishek Rana
  • Alain Roy
  • Chander Sehgal
  • Igor Sfiligoi
  • Frank Wuerthwein
  • The Open Science Grid Executive Board
Article

Abstract

This article describes the Open Science Grid, a large distributed computational infrastructure in the United States which supports many different high-throughput scientific applications, and partners (federates) with other infrastructures nationally and internationally to form multi-domain integrated distributed systems for science. The Open Science Grid consortium not only provides services and software to an increasingly diverse set of scientific communities, but also fosters a collaborative team of practitioners and researchers who use, support and advance the state of the art in large-scale distributed computing. The scale of the infrastructure can be expressed by the daily throughput of around seven hundred thousand jobs, just under a million hours of computing, a million file transfers, and half a petabyte of data movement. In this paper we introduce and reflect on some of the OSG capabilities, usage and activities.

Keywords

Scientific computing Distributed computing Grids High throughput computing Data intensive computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pordes, R.: Challenges facing production Grids. In: High Performance Computing and Grids in Action. Advances in Parallel Computing, 16th edn., pp. 506–521. IOS, Amsterdam (2008)Google Scholar
  2. 2.
    The ATLAS Collaboration and Aad, G., et al.: The ATLAS experiment at the CERN large Hadron collider. Journal of Instrumentation 3, JINST 3 S0800 (2008). doi: 10.1088/1748-0221/3/08/S08003
  3. 3.
    The CMS Collaboration, Chatrchyan, S., et al.: The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). doi: 10.1088/1748-0221/3/08/S08004
  4. 4.
    LIGO and the Detection of Gravitational Waves, Physics Today (1999)Google Scholar
  5. 5.
    Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the condor experience. Concurrency - Practice and Experience 17(2–4), 323–356 (2005)CrossRefGoogle Scholar
  6. 6.
    Globus Toolkit Version 4: Software for service-oriented systems. I. Foster. In: IFIP International Conference on Network and Parallel Computing, Springer LNCS 3779, pp. 2–13 (2006)Google Scholar
  7. 7.
    Knispel*†, B., et al.: Pulsar discovery by global volunteer computing. Science 329(5997), 1305 (2010, September 10). doi: 10.1126/science.1195253 CrossRefGoogle Scholar
  8. 8.
    Pordes, R. for the Open Science Grid Executive Board: Analysis of the current use, benefit, and value of the Open Science Grid. J. Phys.: Conf. Ser. 219, 062024 (2010). doi: 10.1088/1742-6596/219/6/062024 CrossRefGoogle Scholar
  9. 9.
    Cortiana, G. on behalf of the ATLAS Collaboration: e.g. First results on top-quarks from ATLAS, 6 pp. (2010). e-Print: arXiv:1010.0538
  10. 10.
    Martinez Outschoorn, V. for the ATLAS Collaboration: W and Z production in pp Collisions at 7 TeV with the ATLAS experiment at the LHC. ATL-PHYS-PROC-2010-102 (2010)Google Scholar
  11. 11.
    Aaltonen, T., et al., The CDF Collaboration: e.g. Inclusive search for standard model Higgs Boson production in the WW decay channel using the CDF II detector. Phys. Rev. Lett. 104, 061803 (2010). arXiv:1001.4468 CrossRefGoogle Scholar
  12. 12.
    Aaltonen, T., et al., The CDF Collaboration: e.g. Observation of single top Quark production and measurement of ∣V(tb)∣ with CDF. Phys. Rev. D (2010, April 7). Fermilab-Pub-10-063-E. arXiv:1004.1181
  13. 13.
    The CMS Collaboration: e.g. Higgs Boson that decays into τ pairs. Phys. Rev. Lett. 104, 151801 (2010)CrossRefGoogle Scholar
  14. 14.
    Rizzi, A. for the CMS Collaboration: e.g. Early b physics at CMS. (2010) e-Print: arXiv:1011.0634
  15. 15.
    D0 Collaboration: e.g. Search for the standard model Higgs Boson in the ZH→vvbb channel in 5.2 fb-1 of pbarp collisions at sqrt(s) = 1.96 TeV. Phys. Rev. Lett. 104, 071801 (2010)CrossRefGoogle Scholar
  16. 16.
    D0 Collaboration: e.g. Search for Higgs Boson production in dilepton and missing energy final states with 5.4 fb-1 of pbarp collisions at sqrt(s) = 1.96 TeV. Phys. Rev. Lett. 104, 061804 (2010)CrossRefGoogle Scholar
  17. 17.
    The LIGO scientific Collaboration: e.g. Searches for gravitational waves from known pulsars with S5 LIGO data. Astrophys. J. 713, 671 (2010)CrossRefGoogle Scholar
  18. 18.
    e.g. Search for gravitational-wave inspiral signals associated with short gamma-ray bursts during LIGO’s fifth and Virgo’s first science run. Astrophys. J. 715, 1453 (2010)Google Scholar
  19. 19.
    The STAR Collaboration: e.g. Charged and strange hadron elliptic flow in Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV. Phys. Rev. C 81, 44902 (2010)CrossRefGoogle Scholar
  20. 20.
    The STAR collaboration: Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. Phys. Rev. D 80, 111108 (2009)CrossRefGoogle Scholar
  21. 21.
    Zhao, F., Li, S.C., Sterner, B.W., Xu, J.: Discriminative learning for protein conformation sampling. PROTEINS: Structure, Function and Bioinformatics 73(1), 228–240 (2008)CrossRefGoogle Scholar
  22. 22.
    Zhao, F., Peng, J., DeBartolo, J., Freed, K.F., Sosnick, T.R., Xu, J.: A probabilistic and continuous model of protein conformational space for templatefree modeling. J. Comput. Biol. 17(6), 783–798 (2010). doi: 10.1089/cmb.2009.0235 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Jha, P.K., Solis, F.J., de Pablo, J.J., de la Cruz, M.O.: Nonlinear effects in the nanophase segregation of polyelectrolyte gels. Macromolecules 42(16), 6284–6289 (2009)CrossRefGoogle Scholar
  24. 24.
    Rosato, A.D., Dybenko, O., Horntrop, D.J., Ratnaswamy, V., Kondic, L.: Microstructure evolution in density relaxation by tapping. Phys. Rev. E. 81, 061301 (2010)CrossRefGoogle Scholar
  25. 25.
    Schultz, A.J., Kofke, D.A.: Sixth, seventh and eighth virial coefficients of the Lennard–Jones model. Mol. Phys. 107(21), 2309–2318 (2009)CrossRefGoogle Scholar
  26. 26.
    Strachan, A., Klimeck, G., Lundstrom, M.: Cyber-enabled simulations in nanoscale science and engineering. Comput. Sci. Eng. 12(2), 12–17 (2010). doi: 10.1109/MCSE.2010.38 CrossRefGoogle Scholar
  27. 27.
    Abbasi, R., et al., IceCube collaboration: Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector. Phys. Rev. Lett. 102, 201302 (2009)CrossRefGoogle Scholar
  28. 28.
    Aguilar-Arevalo, A.A., et al.: First measurement of the muon neutrino charged current quasielastic double differential cross section. Phys. Rev. D 81, 092005 (2010). arXiv:1002:2680 [hep-ex]CrossRefGoogle Scholar
  29. 29.
    Garzoglio, G., et al.: XACML profile and implementation for authorization interoperability between OSG and EGEE. J. Phys. Conf. Ser. 219, 062014 (2010). doi: 10.1088/1742-6596/219/6/062014 CrossRefGoogle Scholar
  30. 30.
    OSG Executive Board: The open science grid J. Phys. Conf. Ser. 78, 012057Google Scholar
  31. 31.
    Altunay, M., Leyffer, S., Linderoth, J.T., Xie, Z.: Optimal response to attacks on The Open Science Grid. Elsevier Editorial System(tm) for Computer Networks COMNET-D-09-3466R1Google Scholar
  32. 32.
    Roy, A., and the OSG Consortium: Building and testing a production quality Grid software distribution for the Open Science Grid. J. Phys. Conf. Ser., Issue 180(1), 012052 (2009). doi: 10.1088/1742-6596/180/1/012052 CrossRefGoogle Scholar
  33. 33.
    Floros, E., Loomis, C.: Interactive and Real-Time Applications on the EGEE Grid Infrastructure, Remote Instrumentation and Virtual Laboratories. Springer, US. doi: 10.1007/978-1-4419-5597-5
  34. 34.
    Vanderster, D.C., et al.: Ganga: user-friendly Grid job submission and management tool for LHC and beyond. J. Phys. Conf. Ser. 219, 072022 (2010). doi: 10.1088/1742-6596/219/7/072022 CrossRefGoogle Scholar
  35. 35.
    Wildish, T., Huang, C.-H.: PhEDEx Data Service Ricky Egeland. J. Phys. Conf. Ser. 219, 062010 (2010). doi: 10.1088/1742-6596/219/6/062010 CrossRefGoogle Scholar
  36. 36.
    Sfiligoi, I., et al.: glideinWMS—a generic pilot-based workload management system. J. Phys. Conf. Ser. 119, 062044 (2008). doi: 10.1088/1742-6596/119/6/062044 CrossRefGoogle Scholar
  37. 37.
    Couvares, P., Kosar, T., Roy, A., Weber, J., Wenger, K.: Workflow in Condor. In: Taylor, I., Deelman, E., Gannon, D., Shields, M. (eds.) In Workflows for e-Science. Springer, ISBN: 1-84628-519-4 (2007)Google Scholar
  38. 38.
    Damjanovi, A., et al.: Open Science Grid study of the coupling between conformation and water content in the interior of a protein. J. Chem. Inf. Model. 48(10), 2021–2029 (2008). doi: 10.1021/ci800263c CrossRefGoogle Scholar
  39. 39.
    Murphy, M.A., Abraham, L., Fenn, M., Goasguen, S.: Autonomic clouds on the Grid. J. Grid Computing 8(1), 1–18 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2010

Authors and Affiliations

  • Mine Altunay
    • 1
  • Paul Avery
    • 2
  • Kent Blackburn
    • 3
  • Brian Bockelman
    • 13
  • Michael Ernst
    • 4
  • Dan Fraser
    • 5
  • Robert Quick
    • 6
  • Robert Gardner
    • 7
  • Sebastien Goasguen
    • 8
  • Tanya Levshina
    • 1
  • Miron Livny
    • 9
  • John McGee
    • 10
  • Doug Olson
    • 11
  • Ruth Pordes
    • 1
  • Maxim Potekhin
    • 4
  • Abhishek Rana
    • 12
  • Alain Roy
    • 9
  • Chander Sehgal
    • 1
  • Igor Sfiligoi
    • 12
  • Frank Wuerthwein
    • 12
  • The Open Science Grid Executive Board
  1. 1.FermilabBataviaUSA
  2. 2.University of FloridaGainesvilleUSA
  3. 3.CaltechPasadenaUSA
  4. 4.Brookhaven National LaboratoryUptonUSA
  5. 5.Argonne National LaboratoryDowners Grove TownshipUSA
  6. 6.Indiana UniversityBloomingtonUSA
  7. 7.University of ChicagoChicagoUSA
  8. 8.Clemson UniversityClemsonUSA
  9. 9.University of Wisconsin MadisonMadisonUSA
  10. 10.RENCIChapel HillUSA
  11. 11.Lawrence Berkeley National LaboratoryBerkeleyUSA
  12. 12.University of CaliforniaSan DiegoUSA
  13. 13.University of Nebraska LincolnLincolnUSA

Personalised recommendations