Advertisement

Journal of Grid Computing

, Volume 6, Issue 2, pp 195–213 | Cite as

Modeling and Supporting Grid Scheduling

  • Andrea Pugliese
  • Domenico Talia
  • Ramin Yahyapour
Article

Abstract

Grid resource management systems and schedulers are important components for building Grids. They are responsible for the selection and allocation of Grid resources to current and future applications. Thus, they are important building blocks for making Grids available to user communities. In this paper we briefly analyze the requirements of Grid resource management and provide a classification of schedulers. Then, we define an extensible formal model for Grid scheduling activities, and characterize the general Grid scheduling problem. Finally, we provide a reference architecture for the support of our model and discuss different aspects of architectural implementations.

Keywords

Grid resource management Grid scheduling Job models Resource models Scheduling frameworks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramson, D., Giddy, J.: Scheduling large parametric modelling experiments on a distributed meta-computer. In: Proceedings of the International Parallel Computing Workshop (1997)Google Scholar
  2. 2.
    Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement specification. Open Grid Forum Informational Document (in public comment period) (2006)Google Scholar
  3. 3.
    Anjomshoaa, A., Brisard, F., Drescher, M., Fellows, D., Ly, A., McGough, S., Pulsipher, D., Savva, A.: Job Submission Description Language specification. Open Grid Forum Informational Document (2005)Google Scholar
  4. 4.
    Arnold, D.C., Casanova, H., Dongarra, J.J.: Innovations of the NetSolve Grid computing system. Concurrency Computat.: Pract. Exper. 14, 1457–1479 (2002)zbMATHCrossRefGoogle Scholar
  5. 5.
    Berman, F.: High-performance schedulers. In: Foster, I., Kesselman, C. (eds.) The Grid – blueprint for a new computing infrastructure. Morgan Kaufmann, San Francisco, USA (2000)Google Scholar
  6. 6.
    Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira, S., Hayes, J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, N., Su, A., Zagorodnov, D.: Adaptive computing on the Grid using AppLeS. IEEE Trans. Parallel and Dist. Syst. 14(4), 369–382 (2003)CrossRefGoogle Scholar
  7. 7.
    Braun, T.D., Siegel, H.J., Beck, N., Boloni, L.L., Maheswaran, M., Reuther, A.I., Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D., Freund, R.F.: A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. J. Parallel and Dist. Comput. 61(6), 810–837 (2001)CrossRefGoogle Scholar
  8. 8.
    Buyya, R., Venugopal, S.: The Gridbus toolkit for service oriented Grid and utility computing: an overview and status report. In: Proceedings of the IEEE International Workshop on Grid Economics and Business Models (2004)Google Scholar
  9. 9.
    Buyya, R., Chapin, S., Di Nucci, D.: Architectural models for resource management on the Grid. In: Proceedings of the First IEEE/ACM International Workshop on Grid Computing (2000)Google Scholar
  10. 10.
    Cannataro, M., Talia, D.: The Knowledge Grid. Commun. ACM 46(1), 89–93 (2003)CrossRefGoogle Scholar
  11. 11.
    Cao, J., Jarvis, S.A., Saini, S., Nudd, G.R.: GridFlow: workflow management for Grid computing. In: Proceedings of the International Symposium on Cluster Computing and the Grid (2003)Google Scholar
  12. 12.
    Casavant, T.L., Kuhl, J.G.: A taxonomy of scheduling in general-purpose distributed computing systems. IEEE Trans. Software Eng. 14(2), 141–154 (1988)CrossRefGoogle Scholar
  13. 13.
    Chervenak, A.L., Palavalli, N., Bharathi, S., Kesselman, C., Schwartzkopf, R.: Performance and scalability of a replica location service. In: Proceedings of the IEEE International Symposium on High Performance Distributed Computing (2004)Google Scholar
  14. 14.
    Chudak, A., Shmoys, D.B.: Approximation algorithms for precedence-constrained scheduling problems on parallel machines that run at different speeds. In: Proceedings of the ACM-SIAM Symposium on Discrete algorithms (1997)Google Scholar
  15. 15.
    Cosnard, M., Jeannot, E.: Compact DAG representation and its dynamic scheduling. J. Parallel and Dist. Comput. 58(3), 487–514 (1999)CrossRefGoogle Scholar
  16. 16.
    Czajkowski, K., Ferguson, D.F., Foster, I., Frey, J., Graham, S., Sedukhin, I., Snelling, D., Tuecke, S., Vambenepe, W.: The WS-Resource Framework. http://www.globus.org/wsrf/ (2004)
  17. 17.
    Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W., Tuecke, S.: A resource management architecture for metacomputing systems. In: Proceedings of the IPPS/SPDP Workshop on Job Scheduling Strategies for Parallel Processing (1997)Google Scholar
  18. 18.
    Dail, H., Sievert, O., Berman, F., Casanova, H., YarKhan, A., Vadhiyar, S., Dongarra, J., Liu, C., Yang, L., Angulo, D., Foster, I.: Scheduling in the Grid application development software project. In: Nabrzyski, J., Schopf, J., Weglarz, J. (eds.) Grid Resource Management: state of the art and future trends. Kluwer (2003)Google Scholar
  19. 19.
    Deelman, E., Blythe, J., Gil, Y., Kesselman, C.: Workflow management in Griphyn. In: Nabrzyski, J., Schopf, J., Weglarz, J. (eds.) Grid resource management: state of the art and future trends. Kluwer (2003)Google Scholar
  20. 20.
    Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Blackburn, K., Lazzarini, A., Arbree, A., Cavanaugh, R., Koranda, S.: Mapping abstract complex workflows onto Grid environments. J. Grid Comput. 1(1), 25–39 (2003)CrossRefGoogle Scholar
  21. 21.
    Derbal, Y.: Entropic Grid scheduling. J. Grid Comput. 4(4), 373–394 (2006)zbMATHCrossRefGoogle Scholar
  22. 22.
    Desprez, F., Vernois, A.: Simultaneous scheduling of replication and computation for data-intensive applications on the Grid. J. Grid Comput. 4(1), 19–31 (2006)CrossRefGoogle Scholar
  23. 23.
    Dhodhi, M.K., Ahmad, I., Yatama, A., Ahmad, I.: An integrated technique for task matching and scheduling onto distributed heterogeneous computing systems. J. Parallel and Dist. Comput. 62(9), 1338–1361 (2002)zbMATHCrossRefGoogle Scholar
  24. 24.
    Evers, X.: A literature study on scheduling in distributed systems. Tech. rep., Delft University of Technology (1992)Google Scholar
  25. 25.
    Fahringer, T., Jugravu, A., Pllana, S., Prodan, R., Truong, H.L.: ASKALON: A tool set for cluster and Grid computing. Concurrency Computat.: Pract. Exp. 17(2–4), 143–169 (2005)CrossRefGoogle Scholar
  26. 26.
    Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. Freeman (1979)Google Scholar
  27. 27.
  28. 28.
    Iverson, M., Ozguner, F., Potter, L.: Statistical prediction of task execution times through analytic benchmarking for scheduling in a heterogeneous environment. In: Proceedings of the International Heterogeneous Computing Workshop (1999)Google Scholar
  29. 29.
    Khan, A.A., McCreary, C.L., Jones, M.S.: A comparison of multiprocessor scheduling heuristics. In: Proceedings of the International Conference on Parallel Processing (1994)Google Scholar
  30. 30.
    Kishimoto, H., Treadwell, J. (eds.) Defining the Grid: A roadmap for OGSA(TM) standards. Open Grid Forum Informational Document (GFD.53) (2005)Google Scholar
  31. 31.
    Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy and survey of Grid resource management systems for distributed computing. Softw. Pract. Exper. 32(2), 135–164 (2002)zbMATHCrossRefGoogle Scholar
  32. 32.
    Kwok, Y., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Comput. Surveys 31(4), 406–471 (1999)CrossRefGoogle Scholar
  33. 33.
    Lee, C., Talia, D.: Grid programming models: current tools, issues, and directions. In: Berman, F., Fox, G., Hey, T. (eds.) Grid computing – making the global infrastructure a reality. Wiley, New York, USA (2003)Google Scholar
  34. 34.
    Lenstra, J.K., Kan, A.H.G.R.: Complexity of scheduling under precedence constraints. Oper. Res. 26(1), 22–35 (1978)zbMATHCrossRefGoogle Scholar
  35. 35.
    Lucchese, F., Huerta Yero, E.J., Sambatti, F.S.: An adaptive scheduler for Grids. J. Grid Comput. 4(1), 1–17 (2006)CrossRefGoogle Scholar
  36. 36.
    Maciel, F., Treadwell, J., Srinivasan, L., Westerinen, A., Stokes, E., Kreger, H., Snelling, D.: Resource management in OGSA. Open Grid Forum Informational Document (GFD.45) (2004)Google Scholar
  37. 37.
    Mika, M., Waligora, G., Weglarz, J.: A metaheuristic approach to scheduling workflow jobs on a Grid. In: Nabrzyski, J., Schopf, J., Weglarz, J. (eds.) Grid Resource Management: state of the art and future trends. Kluwer (2003)Google Scholar
  38. 38.
    Nabrzyski, J., Schopf, J., Weglarz, J. (eds.) Grid Resource Management: state of the art and future trends. Kluwer (2003)Google Scholar
  39. 39.
    Orlando, S., Palmerini, P., Perego, R., Silvestri, F.: Scheduling high-performance data mining tasks on a data Grid environment. In: Proceedings of the Europar Conference (2002)Google Scholar
  40. 40.
    Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Prentice Hall (2001)Google Scholar
  41. 41.
    Robertazzi, T.G.: Ten reasons to use divisible load theory. IEEE Computer 36(5), 63–68 (2003)Google Scholar
  42. 42.
    Sample, N., Keyani, P., Wiederhold, G.: Schedul ing under uncertainty: planning for the ubiquitous Grid. In: Proceedings of the COORDINATION Conference (2002)Google Scholar
  43. 43.
    Selvakumar, S., Siva Ram Murthy, C.: Scheduling precedence constrained task graphs with non-negligible intertask communication onto multi processors. IEEE Trans. Parallel and Dist. Syst. 5(3), 328–336 (1994)CrossRefGoogle Scholar
  44. 44.
    Siegel, H.J., Ali, S.: Techniques for mapping tasks to machines in heterogeneous computing systems. J. Syst. Architecture 46(8), 627–639 (2000)CrossRefGoogle Scholar
  45. 45.
    Thain, D., Basney, J., Son, S., Livny, M.: The Kangaroo approach to data movement on the Grid. In: Proceedings of the IEEE International Symposium on High Performance Distributed Computing (2001)Google Scholar
  46. 46.
    Thain, D., Tannenbaum, T., Livny, M.: Condor and the Grid. In: Berman, F., Fox, G., Hey, T. (eds.) Grid computing – making the global infrastructure a reality. Wiley, New York, USA (2003)Google Scholar
  47. 47.
    Tonellotto, N., Yahyapour, R., Wieder, P.: A proposal for a generic Grid scheduling architecture. Technical report, CoreGRID Institute on Resource Management and Scheduling (2006)Google Scholar
  48. 48.
    Topcuoglu, H., Hariri, S., Wu, M.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002)CrossRefGoogle Scholar
  49. 49.
    Wieder, P., Yahyapour, R. (eds.) Grid scheduling use cases. Open Grid Forum Informational Document (GFD.64) (2006)Google Scholar
  50. 50.
    Wolski, R., Spring, N., Hayes, J.: The network weather service: a distributed resource performance forecasting service for metacomputing. Future Gener. Comput. Syst. 15(5), 757–768 (1999)CrossRefGoogle Scholar
  51. 51.
    Wu, M., Shu, W., Gu, J.: Efficient local search for DAG scheduling. IEEE Trans Parallel Distrib. Syst. 12(6), 617–627 (2001)CrossRefGoogle Scholar
  52. 52.
    Yu, J., Buyya, R.: A taxonomy of workflow management systems for Grid computing. J. Grid Comput. 3(3–4), 171–200 (2005)CrossRefGoogle Scholar
  53. 53.
    Zhao, Y., Dobson, J., Foster, I., Moreau, L., Wilde, M.: A notation and system for expressing and executing cleanly typed workflows on messy scientific data. SIGMOD Record 34(3), 37–43 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • Andrea Pugliese
    • 1
  • Domenico Talia
    • 1
  • Ramin Yahyapour
    • 2
  1. 1.DEIS DepartmentUniversity of CalabriaRendeItaly
  2. 2.IRF InstituteUniversity of DortmundDortmundGermany

Personalised recommendations