Agronomic and chemical description of open-pollinated varieties of opaque-2 and purple maize (Zea mays L.) adapted to semiarid region of Argentina

Abstract

The objective of this study was to compare the evolution of two populations of opaque-2 and purple maize in the central semiarid region of Argentina, and to characterize the agronomic traits and grain chemical attributes to conclude the varietal description of each population. Introduced germplasm of both varietal types was grown under rainfed conditions during four crop years (2011/12, 2013/14, 2014/15 and 2015/16) and characterized both agronomically and chemically. Significant differences were observed between varietal types in the morphological traits of plants and cobs, but did not differ in male flowering or female flowering. Purple maize exhibited taller plants with thicker stems and smaller cobs with heavier grains than opaque-2 maize. Purple maize showed lower grain yields (mean of 4.84 vs. 6.16 tn ha−1 in opaque-2 maize) with more marked variations between cycles (3.02 to 6.62 vs. 5.47 to 7.28 tn ha−1 in opaque-2 maize). The effects of the environment and genotype x environment interaction (G × E) were more notable for grain yield and grain chemical features such us protein, amylose and phenolic compound contents. Nonetheless, most of the agronomic traits in each varietal type showed higher genetic effects (67–92% in opaque-2 maize and 55–82% in purple maize) and a lower G × E (3–14% in opaque-2 maize and 7–19% in purple maize). The advances of this study represent substantial efforts on the development, characterization and description of maize genetic resources in Argentina, which represent potential raw materials for the functional-foods industry.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1

Data availability

The data that support the findings of this study are not publicly available due to being protected by intellectual property. Data are however available from the corresponding author upon reasonable request.

Abbreviations

OPVs:

Open-pollination varieties

CIMMYT:

International Maize and Wheat Improvement Center

PH:

Plant height

EH:

Ear height

NL:

Number of leaves

ST:

Stem diameter

NE:

Ears per plant

CL:

Cob length

CD:

Cob diameter

NR:

Row number

NG:

Grains per row

W100:

Weight of 100 grains

GY:

Grain yield

MF:

Male flowering period

FF:

Female flowering period

DW:

Dry weight

RS:

Resistant starch

NRS:

Non-resistant starch

TPC:

Total polyphenol content

TAC:

Total anthocyanin content

CV:

Coefficient of variation

GV:

Genetic variance

EV:

Environmental variance

G × E:

Genotype × environment interaction variance

References

  1. AACC (2010) American Association of Cereal Chemists International. Approved Methods of Analysis, 11th edn. Methods 08–01.01, 44–19.01, 46–13.01, 30–25.01 and 32–40.01 AACC International, St. Paul, MN

  2. Arellano-Vázquez JL, Tut-Couoh C, Ramírez AM, Salinas-Moreno Y, Taboada-Gaytán OR (2003) Blue maize from the Mexican high lands. I. Grain yield and agronomic traits. Rev Fitotec Mex 26:101–107

    Google Scholar 

  3. Arendt EK, Emanuele Z (2013) Cereal grains for the food and beverage industries. Woodhead Publishing, Cambridge

    Google Scholar 

  4. Arteaga LV (2004) Caracterización y evaluación de seis híbridos y seis variedades de polinización libre de maíz (Zea mays L.) en El Viejo, Chinandenga. Tesis de Grado. Universidad Nacional Agraria, Facultad de Agronomía. Managua, Nicaragua

  5. Beckles DM, Thitisaksakul M (2014) How environmental stress affects starch composition and functionality in cereal endosperm. Starch 66:58–71. https://doi.org/10.1002/star.201300212

    CAS  Article  Google Scholar 

  6. Beta T, Corke H (2001) Genetic and environmental variation in sorghum starch properties. J Cereal Sci 34:261–268. https://doi.org/10.1006/jcrs.2000.0379

    CAS  Article  Google Scholar 

  7. Biasutti C, Balzarini M (2017) Yield prediction in corn hybrids (Zea mays L.) in late sowing environments. J Basic Appl Genet 1:19–26

    Google Scholar 

  8. Biasutti CA, Casanoves F, Peiretti DA (2000) Response to different adaptative mass selection criteria in a maize exotic population. Maydica 45:89–94

    Google Scholar 

  9. Bolsa de Cereales de Córdoba (2016) Anuario Meteorológico (2016) Red de Estaciones Meteorológicas del Departamento de Información Agroeconómica. https://es.scribd.com/document/336995943/Anuario-Meteorologico2016#fullscreen &from_embed. Accessed 20 February 2020

  10. Borrás L, Otegui ME (2001) Maize kernel weight response to postflowering source–sink ratio. Crop Sci 49:1816–1822. https://doi.org/10.2135/cropsci2001.1816

    Article  Google Scholar 

  11. Bracco M, Lia VV, Gottlieb AM, Hernández JC, Poggio L (2009) Genetic diversity in maize landraces from indigenous settlements of Northeastern Argentina. Genetica 135:39–49. https://doi.org/10.1007/s10709-008-9252-z

    Article  PubMed  Google Scholar 

  12. Cirilo AG (2004) Fecha de siembra y rendimiento en maíz. Idia XXI 4:122–127

    Google Scholar 

  13. Cirilo AG, Actis M, Andrade FH, Valentinuz OR (2011) Crop management affects dry-milling quality of flint maize kernels. Field Crop Res 122:140–150. https://doi.org/10.1016/j.fcr.2011.03.007

    Article  Google Scholar 

  14. Corcuera VR, Pennisi M, Kandus M, Salerno JC (2016) Composición química del grano de maíces especiales desarrollados en la Argentina para la industria alimentaria. La Alimentación Latinoamericana 50:50–56

    Google Scholar 

  15. Ministerio de Agricultura y Ganadería (2019) Cartas de suelo de Córdoba. http://suelos.cba.gov.ar/VILLADELROSARIO/index.html Accessed 2 June 2020

  16. De la Rosa-Millán J, Agama-Acevedo E, Jimenez-Aparicio A, Bello-Pérez L (2010) Starch characterization of different blue maize varieties. Starch 62:549–557. https://doi.org/10.1002/star.201000023

    CAS  Article  Google Scholar 

  17. Del Pozo-Insfran D, Brenes CH, Serna-Saldivar SO, Talcott ST (2006) Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products. Food Res Int 39:696–703. https://doi.org/10.1016/j.foodres.2006.01.014

    CAS  Article  Google Scholar 

  18. Di Rienzo J, Guzmán A, Casanoves F (2002) A multiple comparisons method based on the distribution of the root node distance of a binary tree. J Agr Biol Environ Stat 7:1–14. https://doi.org/10.1198/10857110260141193

    Article  Google Scholar 

  19. Di Rienzo JA, Macchiavelli R, Casanoves F (2017) Modelos Lineales Mixtos: Aplicaciones en InfoStat. https://www.researchgate.net/publication/283491350_Modelos_lineales_mixtos_aplicaciones_en_InfoStat. Accessed 12 November 2020

  20. Escribano-Bailón MT, Santos-Buelga C, Rivas-Gonzalo JC (2004) Anthocyanins in cereals. J Chromatogr A 1054:129–141. https://doi.org/10.1016/j.chroma.2004.08.152

    CAS  Article  PubMed  Google Scholar 

  21. Eyhérabide GH (2015) Bases para el manejo del cultivo de maíz. INTA Pergamino, Argentina

    Google Scholar 

  22. Gayral M, Gaillard C, Bakan B, Dalgalarrondo M, Elmorjani K, Delluc C, Brunet S, Linossier L, Morel MH, Marion D (2016) Transition from vitreous to floury endosperm in maize (Zea mays L.) kernels is related to protein and starch gradients. J Cereal Sci 68:148–154. https://doi.org/10.1016/j.jcs.2016.01.013

    CAS  Article  Google Scholar 

  23. Gibbon B, Larkins B (2005) Molecular genetic approaches to developing quality protein maize. Trends Genet 21:227–233. https://doi.org/10.1016/j.tig.2005.02.009

    CAS  Article  PubMed  Google Scholar 

  24. Gibson TS, Solah VA, McCleary BV (1997) A procedure to measure amylose in cereal starches and flours with concanavalin A. J Cereal Sci 25:111–119. https://doi.org/10.1006/jcrs.1996.0086

    CAS  Article  Google Scholar 

  25. Gunaratna NS, Groote H, Nestel P, Pixley KV, McCabe GP (2010) A meta-analysis of community-based studies on quality protein maize. Food Policy 35:202–210. https://doi.org/10.1016/j.foodpol.2009.11.003

    Article  Google Scholar 

  26. Hallauer AR, Carena MJ (2012) Recurrent selection methods to improve germplasm in maize. Maydica 57:266–283

    Google Scholar 

  27. Hallauer AR, Carena MJ, Miranda Filho JB (2010) Quantitative genetics in maize breeding, 3rd edn. Springer, New York

    Google Scholar 

  28. Herrera-Cabrera EB, Castillo-González F, Ortega-Pazkca RA, Delgado-Alvarado A (2013) Superior populations within the maize diversity from Eastern state of Mexico. Rev Fitotec Mex 36:33–43

    Google Scholar 

  29. Huamán-Alvino C (2008) Orígen del maíz morado. In: Carhuapoma-Yance M, López-Guerra S (eds) Maíz morado Purple Corn. Universidad Nacional Mayor de San Marcos, Lima, Perú, Moléculas bioactivas antioxidantes y anticancerígenas, pp 33–37

    Google Scholar 

  30. Huamán-Alvino CK, Aquino-Méndez EM, Chirinos R, Campos D, Gálvez-Ranilla L (2016) Bioactive phenolic compounds of accessions of native purple corn (Zea mays L.) from Peru. Agron Colomb 34:1352–1355. https://doi.org/10.15446/agron.colomb.v34n1supl.58448

    Article  Google Scholar 

  31. Instituto Nacional de Semillas (2020) Ministerio de Agricultura, Ganadería y Pesca. https://www.argentina.gob.ar/inase. Accessed 12 November 2020

  32. Jing P, Noriega V, Schwartz J, Giusti M (2007) Effects of growing conditions on purple corncob (Zea mays L.) anthocyanins. J Agr Food Chem 55:8625–8629. https://doi.org/10.1021/jf070755q

    CAS  Article  Google Scholar 

  33. Kriz AL (2009) Enhancement of amino acid availability in corn grain. In: Nagata H, Widholm JH (eds) Molecular genetic approaches to maize improvement, Biotechnology in Agriculture and Forestry Series. Springer, Heidelbergy, pp 79–89

    Google Scholar 

  34. Kutka F (2011) Open-pollinated vs hybrid maize cultivars. Sustainability 3(1531):1554. https://doi.org/10.3390/su3091531

    Article  Google Scholar 

  35. Lambert RJ (2001) High-oil corn hybrids. In: Hallauer AR (ed) Specialty Corns, 2nd edn. CRC Press LLC, USA, pp 138–161

    Google Scholar 

  36. Lee J, Durst RW, Wrolstad RE (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int 88:1269–1278

    CAS  Article  Google Scholar 

  37. Li W, Pickard MD, Beta T (2007) Effect of thermal processing on antioxidant properties of purple wheat bran. Food Chem 104:1080–1086. https://doi.org/10.1016/j.foodchem.2007.01.024

    CAS  Article  Google Scholar 

  38. Li HC, Liu YB, Cheng RX, Sun XZ, Wang Y, Tang JH, Liu ZH (2009) Inheritance effect of protein content in maize kernels and its relation to yield. Acta Agron Sinica 35:755–760

    Article  Google Scholar 

  39. Lia VV, Poggio L, Confalonieri VA (2009) Microsatellite variation in maize landraces from Northwestern Argentina: genetic diversity, population structure and racial affiliations. Theor Appl Genet 119:1053–1067. https://doi.org/10.1007/s00122-009-1108-0

    CAS  Article  PubMed  Google Scholar 

  40. Lopez-Martinez LX, Oliart-Ros RM, Valerio-Alfaro G, Lee CH, Parkin KL, Garcia HS (2009) Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT-Food Sci Technol 42:1187–1192. https://doi.org/10.1016/j.lwt.2008.10.010

    CAS  Article  Google Scholar 

  41. Lu D, Yang H, Shen X, Lu W (2016) Effects of high temperature during grain filling on physicochemical properties of waxy maize starch. J Integr Agr 15:309–316. https://doi.org/10.1016/j.carbpol.2013.06.005

    CAS  Article  Google Scholar 

  42. MAIZAR (2013) La cadena del maíz y las oportunidades para desarrollo en Argentina. http://www.maizar.org.ar/vertext.php?id=425 Accessed 15 February 2020

  43. Manjarrez-Salgado M, Palemón-Alberto F, Gómez-Montiel NO, Espinosa-Calderón A, Rodríguez-Herrera SA, Nava AD, Hernández-Castro E, Cruz-Lagunas B (2014) General and specific combinatory adequacy of regular and high-quality protein maíces. Rev Mex Cienc Agric 5:1261–1273. https://doi.org/10.29312/remexca.v5i7.870

    Article  Google Scholar 

  44. Mansilla PS, Nazar MC, Pérez GT (2017) Comparison of flour starch properties in half-sib families of opaque-2 maize (Zea mays L.) from Argentina. Cereal Chem 94:942–949. https://doi.org/10.1094/CCHEM-04-17-0070-R

    CAS  Article  Google Scholar 

  45. Mansilla PS, Nazar MC, Pérez GT (2019) Evaluation and comparison of protein composition and quality in half-sib families of opaque-2 maize (Zea mays L.) from Argentina. Agriscientia 36:39–53. https://doi.org/10.31047/1668.298x.v36.n1.22682

    Article  Google Scholar 

  46. Mansilla PS, Nazar MC, Pérez GT (2020) Flour functional properties of purple maize (Zea mays L.) from Argentina. Influence of environmental growing conditions. Int J Biol Macromol 146:311–319. https://doi.org/10.1016/j.ijbiomac.2019.12.246

    CAS  Article  PubMed  Google Scholar 

  47. Martínez M, Ortiz R, Ríos H, Acosta R (2010) Análisis de las correlaciones en poblaciones cubanas de maíz. Cultivos Tropicales 31:82–91. https://doi.org/10.1234/ct.v31i2.104

    Article  Google Scholar 

  48. Munaro EM, Eyhérabide GH, D’Andrea KE, Cirilo AG, Otegui ME (2011) Heterosis×environment interaction in maize: What drives heterosis for grain yield? Field Crop Res 124:441–449. https://doi.org/10.1016/j.fcr.2011.08.001

    Article  Google Scholar 

  49. Mutlu C, Arslan-Tontul S, Candal C, Kilic O, Erbas M (2018) Physicochemical, thermal, and sensory properties of blue corn (Zea mays L.). J Food Sci 83:53–59. https://doi.org/10.1111/1750-3841.14014

    CAS  Article  PubMed  Google Scholar 

  50. Ordas B, Butron A, Alvarez A, Revilla P, Malvar RA (2012) Comparison of two methods of reciprocal recurrent selection in maize (Zea mays L.). Theor Appl Genet 124:1183–1191. https://doi.org/10.1007/s00122-011-1778-2

    CAS  Article  PubMed  Google Scholar 

  51. Pesantes-Vera M, Rodríguez-Soto J (2011) Effect of simple recurrent selection on agronomic characters in an original population of purple corn adapted to conditions of coast of the province of Trujillo, Peru. REBIOL Universidad Nacional de Trujillo 31:1–8

    Google Scholar 

  52. Salinas-Moreno Y, García C, Coutiño B, Vidal V (2013) Content and type variability of anthocyanins in blue/purple colored grains of Mexican maize populations. Rev Fitotec Mex 36:285–294

    Google Scholar 

  53. San Vicente F, Marín C, Díaz D (2005) Estabilidad del rendimiento y potencial agronómico de híbridos de maíz de alta calidad de proteína (QPM) en Venezuela. Agronomía Trop 55:397–410

    Google Scholar 

  54. Serna-Saldivar SO (2010) Cereal grains: Properties, processing, and nutritional attributes. CRC Press, Boca Raton

    Google Scholar 

  55. Tapia ME, Fries AM (2007) Guía de campo de los cultivos andinos. FAO y ANPE, Lima, Perú

    Google Scholar 

  56. Tenorio-López FA, Mondragón L, Pastelín-Hernández G (2006) Los flavonoides y el sistema cardiovascular: ¿Pueden ser una alternativa terapéutica? Archivos de Cardiología de México 76:33–45

    Google Scholar 

  57. Uriarte-Aceves PM, Cuevas-Rodríguez EO, Gutiérrez-Dorado R, Mora-Rochín S, Reyes-Moreno C, Puangpraphant C, Milán-Carrillo J (2015) Physical, compositional, and wet-milling characteristics of Mexican blue maize (Zea mays L.) landrace. Cereal Chem 92:491–496. https://doi.org/10.1094/CCHEM-01-15-0001-R

    CAS  Article  Google Scholar 

  58. Urias-Lugo DA, Heredia JB, Serna-Saldivar SO, Muy-Rangel MD, Valdez-Torres JB (2015) Total phenolics, total anthocyanins and antioxidant capacity of native and elite blue maize hybrids (Zea mays L.). CyTA-J Food 13:336–339. https://doi.org/10.1080/19476337.2014.980324

    CAS  Article  Google Scholar 

  59. Urias-Peraldí M, Gutiérrez-Uribe JA, Preciado-Ortiz RE, Cruz-Morales AS, Serna-Saldívar SO, García-Lara S (2013) Nutraceutical profiles of improved blue maize (Zea mays) hybrids for subtropical regions. Field Crop Res 141:69–76. https://doi.org/10.1016/j.fcr.2012.11.008

    Article  Google Scholar 

  60. Zhang X (2015) A tutorial on Restricted Maximum Likelihood estimation in Linear Regression and Linear Mixed-Effects Model. https://people.csail.mit.edu/xiuming/docs/tutorials/reml.pdf Accessed 12 November 2020

Download references

Acknowledgements

The authors acknowledge Gabriela Díaz Cortez for providing useful suggestions to improve the English language of the manuscript.

Funding

This work was supported by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT-2012, N°1050) and the Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (SECyT–UNC, 33620180100821CB).

Author information

Affiliations

Authors

Contributions

PSM: Conceptualization, methodology, formal analysis and investigation, writing—original draft preparation; NFB: methodology, investigation; MCN: resources, methodology, investigation; GTP: supervision, writing—reviewing, funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pablo S. Mansilla.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mansilla, P.S., Bongianino, N.F., Nazar, M.C. et al. Agronomic and chemical description of open-pollinated varieties of opaque-2 and purple maize (Zea mays L.) adapted to semiarid region of Argentina. Genet Resour Crop Evol (2021). https://doi.org/10.1007/s10722-021-01133-4

Download citation

Keywords

  • Crop evolution
  • Morphological traits
  • Phenotypic characterization
  • Improved populations