Advertisement

Genetic Resources and Crop Evolution

, Volume 66, Issue 2, pp 453–463 | Cite as

Genetic diversity of Aegilops L. species from Azerbaijan and Georgia using SSR markers

  • Mehraj AbbasovEmail author
  • Robert Brueggeman
  • John Raupp
  • Zeynal Akparov
  • Naib Aminov
  • David Bedoshvili
  • Thomas Gross
  • Patrick Gross
  • Sevda Babayeva
  • Vusala Izzatullayeva
  • Sevinj A. Mammadova
  • Elchin Hajiyev
  • Khanbala Rustamov
  • Bikram S. Gill
Research Article
  • 292 Downloads

Abstract

Five microsatellite (SSR) markers were used to evaluate the genetic diversity of six Aegilops species from Azerbaijan and Georgia. A total of 39 alleles were generated with an average of 7.8 alleles per primer. Twenty markers were species-specific and 6 were accession-specific. The transferability of SSR markers across six species was 100%, with exception of gwm210. The mean polymorphism information content (PIC) and expected heterozygosity (He) values for the entire collection were 0.688 and 0.725, respectively. The average PIC value was the highest in Ae. biuncialis accessions (0.55). The genetic distance (GD) indices, based on five SSR markers, ranged from 0 to 0.83, with a mean value of 0.47. The highest genetic similarity was noted between Ae. neglecta and Ae. triuncialis (GD = 0.26), and the lowest between Ae. neglecta and Ae. tauschii (GD = 0.66). The dendrogram created based on SSR data grouped 72 Aegilops accessions into six clusters according to their taxonomic classification. The accessions from the same province were often placed in the same subclusters, indicating that grouping based on genetic parameters was closely related to the geographic region within countries. The PCoA analysis could differentiate Aegilops accessions according to their species and confirmed subgrouping obtained by cluster analysis.

Keywords

Aegilops Species SSR Genetic diversity Genetic relationship 

Notes

Funding

Funding was provided by Norman Borlaug Fellowship, Fulbright fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abbasov M, Akparov Z, Gross T, Babayeva S, Izzatullayeva V, Hajiye E, Rustamov K, Gross P, Tekin M, Akar T, Chao S (2018) Genetic relationship of diploid wheat (Triticum spp.) species assessed by SSR markers. Genet Resour Crop Evol:1–13Google Scholar
  2. Aghaee-Sarbarzeh M, Harjit S, Dhaliwal HS (2001) A microsatellite marker linked to leaf rust resistance transferred from Aegilops triuncialis into hexaploid wheat. Plant Breed 120:259–261CrossRefGoogle Scholar
  3. Aghaee-Sarbarzeh M, Ferrahi M, Singh S, Singh H, Friebe B, Gill BS, Dhaliwal HS (2002) PhI-induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica 127(3):377–382CrossRefGoogle Scholar
  4. Aliyev RT, Abbasov MA, Mammadov AC (2007) Genetic identification of diploid and tetraploid wheat species with RAPD markers. Turk J Biol 31(3):173–180Google Scholar
  5. Alnaddaf LM, Moualla MY, Haider N (2012) The Genetic Relationships among Aegilops L. and Triticum L. species. Asian J Agric Sci 4(5):352–367Google Scholar
  6. Babayeva S, Akparov Z, Abbasov M, Mammadov A, Zaifizadeh M, Street K (2009) Diversity analysis of Central Asia and Caucasian lentil (Lens culinaris Medik.) germplasm using SSR fingerprinting. Genet Resour Crop Evol 56(3):293CrossRefGoogle Scholar
  7. Badaeva ED, Amosova AV, Muravenko OV, Samatadze TE, Chikida NN, Zelenin AV, Friebe B, Gill BS (2002) Genome differentiation in Aegilops. 3. Evolution of the D-genome cluster. Plant Syst Evol 231:163–190CrossRefGoogle Scholar
  8. Bertin P, Grégoire D, Massart S, De Froidmont D (2004) High level of genetic diversity among spelt germplasm revealed by microsatellite markers. Genome 47(6):1043–1052CrossRefGoogle Scholar
  9. Bordbar F, Rahiminejad MR, Saeidi H, Blattner FR (2011) Phylogeny and genetic diversity of D-genome species of Aegilops and Triticum (Triticeae, Poaceae) from Iran based on microsatellites, ITS, and trnL-F. Plant Syst Evol 291:117–131CrossRefGoogle Scholar
  10. Caldwell K, Dvorak J, Lagudah ES, Akhunov E, Luo M-C, Wolters P, Powell W (2004) Sequence polymorphism in polyploid wheat and their D genome diploid ancestor. Genetics 167:941–947CrossRefGoogle Scholar
  11. Chao S, Zhang W, Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among U.S. wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030CrossRefGoogle Scholar
  12. Chee PW, Lavin M, Talbert LE (1995) Molecular analysis of evolutionary patterns in U genome wild wheats. Genome 38:290–297CrossRefGoogle Scholar
  13. Chhuneja P, Kaur S, Goel RK, Aghaee-Sarbarzeh M, Prashar M, Dhaliwal HS (2008) Transfer of leaf rust and stripe rust resistance from Aegilops umbellulata Zhuk. to bread wheat (Triticum aestivum L.). Genet Resour Crop Evol 55(6):849–859CrossRefGoogle Scholar
  14. Dadzie AM, Livingstone DS, Opoku SY, Takrama J, Padi F, Offei SK, Danquah EY, Motamayor JC, Schnell RJ, Kuhn DN (2013) Conversion of microsatellite markers to single nucleotide polymorphism (SNP) markers for genetic fingerprinting of Theobroma cacao L. J Crop Improv 27:215–241CrossRefGoogle Scholar
  15. Dubcovsky J, Dvorak J (1995) Genome identification of the Triticum crassum complex (Poaceae) with the restriction patterns of repeated nucleotide sequences. Am J Bot 82:131–140CrossRefGoogle Scholar
  16. Dvorak J, Luo MC, Yang ZL (1998) Genetic evidence on the origin of Triticum aestivum L. In: Damania AB, Valkoun J, Willcox G, Qualset CO (eds) The origins of agriculture and crop domestication. Proceedings of Harlan symposium. ICARDA, Aleppo, pp 235–251Google Scholar
  17. Ehtemam MH, Rahiminejad MR, Saeidi H, Tabatabaei BES, Krattinger SG, Keller B (2010) Relationships among the A Genomes of Triticum L. Species as evidenced by SSR markers, in Iran. Int J Mol Sci 11:4309–4325CrossRefGoogle Scholar
  18. Eldarov M, Aminov N, van Slageren M (2015) Distribution and ecological diversity of Aegilops L. in the greater and lesser Caucasus regions of Azerbaijan. Genet Resour Crop Evol 62(2):265–273CrossRefGoogle Scholar
  19. Gandhi HT, Vales MI, Watson CJ, Mallory-Smith CA, Mori N, Rehman M, Zemetra RS, Riera-Lizarazu O (2005) Chloroplast and nuclear microsatellite analysis of Aegilops cylindrica. Theor Appl Genet 111(3):561–572CrossRefGoogle Scholar
  20. Gascuel O (1997) Concerning the NJ algorithm and its unweighted version, UNJ. In: Mathematical hierarchies and biology. DIMACS workshop, Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society vol 37, pp 149–170Google Scholar
  21. Gong HY, Liu AH, Wang JB (2006) Genomic evolutionary changes in Aegilops allopolyploids revealed by ISSR markers. Acta Phytotax Sin 44:286–295CrossRefGoogle Scholar
  22. Goryunova SV, Kochieva EZ, Chikida NN, Pukhalskyi VA (2004) Phylogenetic relationships and intraspecific variation of D-genome Aegilops L. as revealed by RAPD analysis. Russ J Genet 40:515–523CrossRefGoogle Scholar
  23. Hajiyev ES, Akparov ZI, Aliyev RT, Saidova SV, Izzatullayeva VI, Babayeva SM, Abbasov MA (2015) Genetic polymorphism of durum wheat (Triticum durum Desf.) accessions of Azerbaijan. Russ J Genet 51(9):863–870CrossRefGoogle Scholar
  24. Hammer K (1978) Blütenökologische Merkmale und Reproduktionssystem von Aegilops tauschii Coss. (syn. Ae. squarrosa L.). Kulturpflanze 26:271–282CrossRefGoogle Scholar
  25. Hammer K (1980) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L. Kulturpflanze 28:33–180CrossRefGoogle Scholar
  26. Hedge SG, Valkoun J, Waines JG (2002) Genetic diversity in wild and weedy Aegilops, Amblyopyrum and Secale species: preliminary survey. Crop Sci 42:608–614Google Scholar
  27. Henkrar F, El-Haddoury J, Ouabbou H, Nsarellah N, Iraqi D, Bendaou N, Udupa SM (2016) Genetic diversity reduction in improved durum wheat cultivars of Morocco as revealed by microsatellite markers. Sci Agric 73(2):134–141CrossRefGoogle Scholar
  28. Karaca M, Ince AG (2011) New non-redundant microsatellite and CAPS-microsatellite markers for cotton (Gossypium L.). Turk J Field Crops 16:172–178Google Scholar
  29. Karcicio M, Izbirak A (2003) Isozyme variations in some Aegilops L. and Triticum L. species collected from Central Anatolia. Turk J Bot 27(6):433–440Google Scholar
  30. Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F, Hammer K, Özkan H (2011) Aegilops. Wild crop relatives: genomic and breeding resources. Springer, Berlin, pp 1–76Google Scholar
  31. Konstantinos GT, Bebeli PJ (2010) Genetic diversity of Greek Aegilops species using different types of nuclear genome markers. Mol Phylog Evol 56:951–961CrossRefGoogle Scholar
  32. Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Gill BS (2007a) Characterization and mapping of cryptic alien introgressions from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389CrossRefGoogle Scholar
  33. Kuraparthy V, Sood S, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007b) A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci 47:1995–2003CrossRefGoogle Scholar
  34. Lelley T, Stachel M, Grausgruber H, Vollmann J (2000) Analysis of relationships between Aegilops tauschii and the D-genome of wheat utilizing microsatellites. Genome 43:661–668CrossRefGoogle Scholar
  35. Liu K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129CrossRefGoogle Scholar
  36. Lubbers EL, Gill KS, Cox TS, Gill BS (1991) Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34:354–361CrossRefGoogle Scholar
  37. McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37(4):107–116CrossRefGoogle Scholar
  38. Moghaddam M, Ehdaie B, Waines G (2000) Genetic diversity in populations of wild diploid wheat (Triticum urartu Thum. ex Gandil.) revealed by isozymes markers. Genet Resour Crop Evol 47:323–334CrossRefGoogle Scholar
  39. Moradkhani H, Mehrabi AA, Etminan A, Pour-Aboughadareh A (2015) Molecular diversity and phylogeny of Triticum-Aegilops species possessing D genome revealed by SSR and ISSR markers. Plant Breed Seed Sci 71(1):81–95CrossRefGoogle Scholar
  40. Morin PA, Luikart G, Wayne RK (2004) The SNP workshop group SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216CrossRefGoogle Scholar
  41. Naghavi MR, Mardi M, Pirseyedi SM, Kazemi M, Potki P, Ghaffari MR (2007) Comparison of genetic variation among accessions of Aegilops tauschii using AFLP and SSR markers. Genet Resour Crop Evol 54:237–240CrossRefGoogle Scholar
  42. Naghavi MR, Aghaei MJ, Taleei AR, Omidi M, Hassani ME (2008) Genetic diversity of hexaploid wheat and three Aegilops species using microsatellite markers. https://ses.library.usyd.edu.au/bitstream/2123/3231/1/P028.pdf. Accessed 18 Nov 2018
  43. Naghavi MR, Aghaei MJ, Taleei AR, Omidi M, Mozafari J, Hassani ME (2009) Genetic diversity of the D-genome in T. aestivum and Aegilops species using SSR markers. Genet Resour Crop Evol 56:499–506CrossRefGoogle Scholar
  44. Nazareno AG, dos Reis MS (2011) The same but different: monomorphic microsatellite markers as a new tool for genetic analysis. Am J Bot 98(10):e265–e267CrossRefGoogle Scholar
  45. Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://darwin.cirad.fr/darwin. Accessed 18 Nov 2018
  46. Pester TA, Ward SM, Fenwick AL, Westra P, Nissen SJ (2003) Genetic diversity of jointed goatgrass (Aegilops cylindrica) determined with RAPD and AFLP markers. Weed Sci 51:287–293CrossRefGoogle Scholar
  47. Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW, Röder MS (2000) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101(1):100–106CrossRefGoogle Scholar
  48. Pour-Aboughadareh A, Ahmadi J, Mehrabi AA, Etminan A, Moghaddam M (2017) Insight into the genetic variability analysis and relationships among some Aegilops and Triticum species, as genome progenitors of bread wheat, using SCoT markers. Plant Biosyst 152(4):694–703CrossRefGoogle Scholar
  49. Qi LL, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res 15:3–19CrossRefGoogle Scholar
  50. Queen RA, Gribbon BM, James C, Jack P, Flavell AJ (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Gen Genom 271:91–97CrossRefGoogle Scholar
  51. Schneider A, Molnar I, Mornar-Lang M (2008) Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19CrossRefGoogle Scholar
  52. Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol 9:1–22Google Scholar
  53. Stoilova T, Spetsov P (2006) Chromosome 6U from Aegilops geniculata roth carrying powdery mildew resistance in bread wheat. Breed Sci 56:351–357CrossRefGoogle Scholar
  54. Tuler AC, Carrijo TT, Nóia LR, Ferreira A, Peixoto AL, da Silva Ferreira MF (2015) SSR markers: a tool for species identification in Psidium (Myrtaceae). Mol Biol Rep 42(11):1501–1513CrossRefGoogle Scholar
  55. Van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Agricultural University Papers, Wageningen, NetherlandsGoogle Scholar
  56. Zhang XY, Wang RRC, Dong YS (1996) RAPD polymorphisms in Aegilops geniculata Roth (Ae. ovata auct. non L.). Genet Resour Crop Evol 43:429–433Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Mehraj Abbasov
    • 1
    Email author
  • Robert Brueggeman
    • 2
  • John Raupp
    • 4
  • Zeynal Akparov
    • 1
  • Naib Aminov
    • 1
  • David Bedoshvili
    • 3
  • Thomas Gross
    • 2
  • Patrick Gross
    • 2
  • Sevda Babayeva
    • 1
  • Vusala Izzatullayeva
    • 1
  • Sevinj A. Mammadova
    • 1
  • Elchin Hajiyev
    • 1
  • Khanbala Rustamov
    • 1
  • Bikram S. Gill
    • 4
  1. 1.Genetic Resources Institute of ANASBakuAzerbaijan
  2. 2.Plant Pathology DepartmentNorth Dakota State UniversityFargoUSA
  3. 3.Agricultural University of GeorgiaTbilisiGeorgia
  4. 4.Department of Plant Pathology, Wheat Genetics Resource CenterKansas State UniversityManhattanUSA

Personalised recommendations