Skip to main content

Advertisement

Log in

Diversity in wild relatives of wheat: an expedition collection from cold-arid Indian Himalayas

  • Short Communication
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Impact of climate change is of much concern across the globe in recent years and more specifically to the fragile ecosystems like cold-arid Himalayan region especially from a perspective on biodiversity and its conservation. Hence, collection and conservation of the biodiversity ex situ is a much better option to safeguard species at risk; especially for crop wild relatives with reference to agriculture. We have explored in 2014 and 2015 the cold-arid tracts of Himachal Pradesh and Jammu & Kashmir states in India and collected 169 accessions of wheat wild relatives comprising 12 taxa, viz., Elymus L. (8/139 acc.), Hordeum L. (2/4) and Leymus Hochst. (2/26) belonging to the tribe Triticeae. New geographic occurrence of six species—Elymus himalayanus (Nevski) Tzvelev, E. repens (L.) Gould, E. schrenkianus (Fisch. et C.A.Mey) Tzvelev, Hordeum brevisubulatum (Trin.) Link subsp. turkestanicum (Nevski) Tzvelev, H. bogdanii Wilensky and Leymus duthiei (Stapf ex Hook.f.) C. Yen, J.L. Yang et B.R. Baum was reported. Broader variability at inter- and intra-specific level in Elymus nutans Griseb., E. dahuricus Turcz. and Leymus secalinus across the ecological amplitude was observed. E. dahuricus population was heterogeneous for waxiness and pigmentation characters. Collected germplasm would serve as a potential resource for introgression of biotic and abiotic stress tolerance genes towards developing resilient wheat cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Bachereau F, Marigo G, Asta J (1998) Effect of solar radiation (UV and visible) at high altitude on CAM-cycling and phenolic compound biosynthesis in Sedum album. Physiol Plant 104:203–210

    Article  CAS  Google Scholar 

  • Baneji G, Basu S (2010) Adapting to climate change in Himalayan cold deserts. Int J Clim Chang Str 2:426–448. https://doi.org/10.1108/17568691011089945

    Article  Google Scholar 

  • Bhardwaj SC, Gangwar OP, Singh SB, Saharan MS, Sharma S (2012) Rust situation and pathotypes of Puccinia species in Leh Ladakh in relation to recurrence of wheat rusts in India. Indian Phytopath 65:230–232

    Google Scholar 

  • Bhutiyani MR, Kale VS, Pawar NJ (2007) Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Clim Change 85:159–177

    Article  Google Scholar 

  • Bor NL (1970) Gramineae-Triticeae. In: Rechinger KH (ed) Flora Iranica 70. Druck- und Verlag-Anst, Akad, pp 147–244

    Google Scholar 

  • Bothmer R von, Seberg O (1995) Strategies for the collecting of wild species. In: Guarino L, Ramanatha Rao V, Reid R (eds) Collecting plant genetic diversity: technical guidelines. CABI International, UK, pp 93–111

    Google Scholar 

  • Cainong JC, Bockus WW, Feng Y, Chen P, Qi L, Sehgal SK, Danilova TV, Koo DH, Friebe B, Gill BS (2015) Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat. Theor Appl Genet 128:1019–1027

    Article  CAS  PubMed  Google Scholar 

  • Castañeda-Álvarez NP, Khoury CK, Achicanoy HA, Bernau V, Dempewolf H, Eastwood RJ, Guarino L, Harker RH, Jarvis A, Maxted N, Müller JV (2016) Global conservation priorities for crop wild relatives. Nat Plants 2:16022

    Article  PubMed  Google Scholar 

  • Chen MJ, Jia SX (2002) China forage plants. China Agricultural Press, Beijing

    Google Scholar 

  • Chevuturi A, Dimri AP, Thayyen RJ (2018) Climate change over Leh (Ladakh), India. Theor Appl Climatol 131:531–545

    Article  Google Scholar 

  • Dvorský M, Doležal J, De Bello F, Klimešová J, Klimeš L (2011) Vegetation types of East Ladakh: species and growth form composition along main environmental gradients. Appl Veg Sci 14:132–147

    Article  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  CAS  PubMed  Google Scholar 

  • Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015) Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6:978. https://doi.org/10.3389/fpls.2015.00978

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorham J, McDonnell E, Wyn Jones RG (1984) Salt tolerance in the Triticeae: Leymus sabulosus. J Exp Bot 35:1200–1209

    Article  CAS  Google Scholar 

  • Guo J, Xu W, Yu X, Shen H, Li H, Cheng D, Liu A, Liu J, Liu C, Zhao S, Song J (2016) Cuticular wax accumulation is associated with drought tolerance in wheat near-isogenic lines. Front Plant Sci 7:1809. https://doi.org/10.3389/fpls.2016.01809

    Article  PubMed  PubMed Central  Google Scholar 

  • Holubec V (2005) Triticeae biodiversity and conservation, a “genebanker’s” view. Czech J Genet Plant Breed 41:118–121

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva

  • Jarvis A, Upadhyaya H, Gowda C, Agrawal P, Fujisaka S, Anderson B (2008) Climate change and its effect on conservation and use of plant genetic resources for food and agriculture and associated biodiversity for food security. Thematic background study paper. http://www.fao.org/docrep/013/i1500e/i1500e16.pdf. Accessed 19 May 2018

  • Kakani VG, Reddy KR, Zhao D, Sailaja K (2003) Field crop responses to ultraviolet-B radiation: a review. Agric For Meteorol 120:191–218

    Article  Google Scholar 

  • Klimeš L, Dickoré B (2005) A contribution to the vascular plant flora of Lower Ladakh (Jammu & Kashmir, India). Willdenowia 35:125–153

    Article  Google Scholar 

  • Knüpffer H (2009) Triticeae genetic resources in ex situ genebank collections. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae, plant genetics and genomics: crops and models 7. Springer Science Business Media, LLC, New York, pp 31–79. http://dx.doi.org/10.1007/978-0-387-77489-3

  • Körner C (2003) Alpine plant life, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  • Madlung A (2013) Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99–104

    Article  CAS  PubMed  Google Scholar 

  • Maxted N, Kell S (2009) Establishment of a global network for the in situ conservation of crop wild relatives: status and needs. Background study paper No. 39, Commission on Genetic Resources for Food and Agriculture, FAO, Rome, Italy. http://www.fao.org/docrep/013/i1500e/i1500e18a.pdf. Accessed 19 May 2018

  • Miao J, Zhang X, Chen S, Ma X, Chen Z, Zhong J, Bai S (2011) Gliadin analysis of Elymus nutans Griseb. from the Qinghai-Tibetan Plateau and Xinjiang, China. Grassl Sci 57:127–134

    Article  CAS  Google Scholar 

  • Mujeeb-Kazi A, Wang RRC (1995) Perennial and annual wheat relatives in the Triticeae. In: Mujeeb-Kazi A, Hettel GP (eds) Utilizing wild grass biodiversity in wheat improvement: 15 years of wide cross research at CIMMYT. CIMMYT research report no. 2, CIMMYT, Mexico, pp 5–13

  • Murti SK (2001) Flora of cold deserts of Western Himalaya, vol 1. Monocotyledons. Botanical Survey of India, Kolkata

    Google Scholar 

  • Palmer MW, Wade GL, Neal P (1995) Standards for the writing of floras. Bioscience 45:339–345

    Article  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Kumar MS (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537. https://doi.org/10.3389/fpls.2017.00537

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodgers WA, Panwar HS, Mathur VB (2000) Wildlife protected area network in India: a review. Wildlife Institute of India, Dehradun

    Google Scholar 

  • Sexton JP, Hangartner SB, Hoffmann AA (2014) Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68:1–15

    Article  CAS  PubMed  Google Scholar 

  • Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE 7:e36741. https://doi.org/10.1371/journal.pone.0036741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun G (2014) Molecular phylogeny revealed complex evolutionary process in Elymus species. J Syst Evol 52:706–711

    Article  Google Scholar 

  • te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešová M, Pyšek P (2011) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19–45

    Article  Google Scholar 

  • Toll JA, Moss H (1995) Reporting on germplasm collection missions. In: Guarino L, Ramanatha Rao V, Reid R (eds) Collecting plant genetic diversity: technical guidelines. CABI International, UK, pp 597–613

    Google Scholar 

  • Vaish SS, Ahmed SB, Prakash K (2011) First documentation on status of barley diseases from the high altitude cold arid Trans-Himalayan Ladakh region of India. Crop Prot 30:1129–1137

    Article  Google Scholar 

  • Vavilov N (1926) Studies on the origin of cultivated plants (in Russian). Trudi Prikl Bot Genet Selek (Leningrad) 16:1–248

    Google Scholar 

  • Weibull J (1988) Resistance in the wild crop relatives Avena macrostachya and Hordeum bogdani to the aphid Rhopalosiphum padi. Entomol Exp Appl 48:225–232

    Article  Google Scholar 

  • Wulff BB, Moscou MJ (2014) Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front Plant Sci 5:692. https://doi.org/10.3389/fpls.2014.00692

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan XB, Guo YX, Liu FY, Zhao C, Liu QL, Lu BR (2010) Population structure affected by excess gene flow in self-pollinating Elymus nutans and E. burchan-buddae (Triticeae: Poaceae). Popul Ecol 52:233–241

    Article  Google Scholar 

  • Yue T, Zhao N, Ramsey RD, Wang C, Fan Z, Chen C, Lu Y, Li B (2013) Climate change trend in China, with improved accuracy. Clim Change 120:137–151

    Article  Google Scholar 

  • Zeng J, Cao W, Hucl P, Yang Y, Xue A, Chi D, Fedak G (2013) Molecular cytogenetic analysis of wheat—Elymus repens introgression lines with resistance to Fusarium head blight. Genome 56:75–82

    Article  CAS  PubMed  Google Scholar 

  • Zhang JB, Bai SQ, Zhang XQ, Ma X, Yan JJ, Zhang CB, You MH (2009) Study on ear characters of Elymus nutans Griseb. in the northwestern plateau of Sichuan province. J Sichuan Univ (Nat Sci Ed) 46:1505–1509

    Google Scholar 

  • Zhang H, Mittal N, Leamy LJ, Barazani O, Song BH (2017) Back into the wild—apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 10:5–24

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors place sincere thanks to Director, ICAR-NBPGR, New Delhi for guidance and support for conducting explorations under institute project; Dr. E Roshini Nayar, ICAR-NBPGR, New Delhi for authenticating the taxonomic identity of some specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pradheep.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10722_2018_706_MOESM1_ESM.docx

Minimum passport details of germplasm collected are provided in Supplementary Material I, while literature information on usefulness of species collected is provided in Supplementary Material II (DOCX 59 kb)

Supplementary material 2 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradheep, K., Singh, M., Sultan, S.M. et al. Diversity in wild relatives of wheat: an expedition collection from cold-arid Indian Himalayas. Genet Resour Crop Evol 66, 275–285 (2019). https://doi.org/10.1007/s10722-018-0706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-018-0706-6

Keywords

Navigation