Skip to main content
Log in

Biochemical diversity of global tea [Camellia sinensis (L.) O. Kuntze] germplasm and its exploitation: a review

  • Review Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Tea (Camellia sinensis L.) is the most widely-consumed beverage in the world. The biochemical components of tea leave include polyphenols (catechins and flavonoides), alkaloids (caffeine, theobromine, theophylline, etc.), volatile compounds, polysaccharides, amino acids, lipids and vitamins show a variety of bioactivities. Prolong cross-pollination nature of tea plants have produced considerable heritable variation, resulting in a high level of genetic diversity. The collection and conservation of the cultivars, landraces and wild relatives of the tea plant provides breeders with fundamental materials from which new cultivars are to be developed. The major role of tea breeding is to improve productivity, enhance tolerant to biotic and abiotic stress, and increase tea flavor and quality. Dissection of the genetic basis of these traits provides the potential for accelerating the breeding process by developing new tools such as marker-assisted selection. Therefore present review provides an overview of the biochemical and metabolite diversity of the global tea germplasm and its characterization and utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcázar A, Ballesteros O, Jurado JM et al (2007) Differentiation of green, white, black, Oolong, and Pu-erh teas according to their free amino acids content. J Agric Food Chem 55:5960–5965

    Article  CAS  PubMed  Google Scholar 

  • Amarakoon T (2004) Tea for Health. Tea Research Institute of Sri Lanka, Talawakelle

    Google Scholar 

  • Ashihara H, Kato M, Chuang-xing Y (1998) Biosynthesis and metabolism of purine alkaloids in leaves of cocoa tea (Camellia ptilophylla). J Plant Res 111:599–604

    Article  CAS  Google Scholar 

  • Ashihara H, Deng WW, Mullen W, Crozier A (2010) Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochemistry 71:559–566

    Article  CAS  PubMed  Google Scholar 

  • Banerjee B (1992) Botanical classification of tea. In: Wilson KC, Clifford MN (eds) Tea cultivation to consumption. Chapman & Hall publication, London, pp 555–601

    Google Scholar 

  • Bezbaruah HP (1976) The tea varieties in cultivation—an appraisal. Two a Bud 23:13–19

    Google Scholar 

  • Bhuyan LP, Tamuly P, Mahanta PK (1991) Lipid content and fatty acid composition of tea shoot and manufactured tea. J Agric Food Chem 39:1159–1162

    Article  CAS  Google Scholar 

  • Borse BB, Rao LJM, Nagalakshmi S, Krishnamurthy N (2002) Fingerprint of black teas from India: identification of the regio-specific characteristics. Food Chem 79:419–424

    Article  CAS  Google Scholar 

  • Chakraborty U, Dutta S, Chakraborty BN (2002) Response of tea plants to water stress. Biol Plant 45:557–562

    Article  CAS  Google Scholar 

  • Chen L, Zhou ZX (2005) Variations of main quality components of tea genetic resources [Camellia sinensis (L.) O. Kuntze] preserved in the China national germplasm tea repository. Plant Food Hum Nutr 60:31–35

    Article  CAS  Google Scholar 

  • Chen C-N, Liang C-M, Lai J-R et al (2003) Capillary electrophoretic determination of theanine, caffeine, and catechins in fresh tea leaves and oolong tea and their effects on rat neurosphere adhesion and migration. J Agric Food Chem 51:7495–7503

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Wang P, Xia Y et al (2005) Genetic diversity and differentiation of Camellia sinensis L. (cultivated tea) and its wild relatives in Yunnan province of China, revealed by morphology, biochemistry and allozyme studies. Genet Resour Crop Evol 52:41–52. https://doi.org/10.1007/s10722-005-0285-1

    Article  CAS  Google Scholar 

  • Chen Y, Jiang Y, Duan J et al (2010) Variation in catechin contents in relation to quality of “Huang Zhi Xiang” Oolong tea (Camellia sinensis) at various growing altitudes and seasons. Food Chem 119:648–652

    Article  CAS  Google Scholar 

  • Chen Q, Zhao J, Chen Z et al (2011) Discrimination of green tea quality using the electronic nose technique and the human panel test, comparison of linear and nonlinear classification tools. Sens Actuators B 159:294–300

    Article  CAS  Google Scholar 

  • Chu DC (1997) Green tea—its cultivation, processing of the leaves for drinking materials, and kinds of green tea. In: Yamamoto T, Juneja LR, Chu DC, Kim M (eds) Chemistry and applications of green tea. CRC Press, Boca Raton, pp 1–11

    Google Scholar 

  • Das SK, Sabhapondit S, Ahmed G, Das S (2013) Biochemical evaluation of triploid progenies of diploid × tetraploid breeding populations of Camellia for genotypes rich in catechin and caffeine. Biochem Genet 51:358–376. https://doi.org/10.1007/s10528-013-9569-x

    Article  CAS  PubMed  Google Scholar 

  • de Vries JHM, Hollman PCH, van Amersfoort I et al (2001) Red wine is a poor source of bioavailable flavonols in men. J Nutr 131:745–748

    Article  PubMed  Google Scholar 

  • Diana M, Quílez J, Rafecas M (2014) Gamma-aminobutyric acid as a bioactive compound in foods: a review. J Funct Foods 10:407–420. https://doi.org/10.1016/j.jff.2014.07.004

    Article  CAS  Google Scholar 

  • Dreosti IE, Wargovich MJ, Yang CS (1997) Inhibition of carcinogenesis by tea: the evidence from experimental studies. Crit Rev Food Sci Nutr 37:761–770

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt UH (2010) Chemistry of Tea. In: Mender L, Liu HW (eds) Comprehensive natural products II: chemistry and biology. Elsevier, London, pp 999–1032

    Chapter  Google Scholar 

  • Fiander H, Schneider H (2000) Dietary ortho phenols that induce glutathione S-transferase and increase the resistance of cells to hydrogen peroxide are potential cancer chemopreventives that act by two mechanisms: the alleviation of oxidative stress and the detoxification of mutagenic. Cancer Lett 156:117–124

    Article  CAS  PubMed  Google Scholar 

  • Fraser K, Harrison JS, Lane GF et al (2012) Non-targeted analysis of tea by hydrophilic interaction liquid chromatography and high resolution mass spectrometry. Food Chem 134:1616–1623

    Article  CAS  PubMed  Google Scholar 

  • Fraser K, Lane GA, Otter DE et al (2014) Non-targeted analysis by LC–MS of major metabolite changes during the oolong tea manufacturing in New Zealand. Food Chem 151:394–403. https://doi.org/10.1016/j.foodchem.2013.11.054

    Article  CAS  PubMed  Google Scholar 

  • Gulati A, Rajkumar S, Karthigeyan S et al (2009) Catechin and catechin fractions as biochemical markers to study the diversity of Indian tea (Camellia sinensis (L.) O. Kuntze) germplasm. Chem Biodivers 6:1042–1052

    Article  CAS  PubMed  Google Scholar 

  • Gunasekara MTK, Arachchige JDK, Mudalige AK, Peiris TUS (2001) Morphological diversity of tea (Camellia sinensis L.) genotypes in Sri Lanka. In: Proceedings of the 57th Annual Session of Sri Lanka Association for the Advancement of Science (SLAAS), p 83

  • Gunasekare MTK (2007a) Current status and future directions in breeding tea. In: Gunasena HPM, Girihagama PC (eds) Current status and future directions of plant breeding research in Sri Lanka. Sri Lanka Council for Agricultural Research Policy, Colombo, pp 111–124

    Google Scholar 

  • Gunasekare MTK (2007b) Applications of molecular markers to the genetic improvement of Camellia sinensis L. (tea)—a review. J Hortic Sci Biotechnol 82:161–169

    Article  CAS  Google Scholar 

  • Gunasekare MTK (2012) Tea Plant (Camellia sinensis) breeding in Sri Lanka. In: Chen L, Apostolides Z (eds) Global tea breeding-achievements, challenges and perspectives. Springer-Verlag, Zhejiang Press, Berlin, Heidelberg, pp 125–176

    Chapter  Google Scholar 

  • Gunasekare MTK, Ranatunga MAB, Piyasundara JHN, Kottawa-Arachchi JD (2012) Tea genetic resources in Sri Lanka: collection, conservation and appraisal. Int J Tea Sci 8:51–60

    Google Scholar 

  • Hara Y, Luo SJ, Wickremasinghe RL, Yamanishi T (1995) Special issue on tea. Food Rev Int 11:371–545

    Article  Google Scholar 

  • He W, Hu X, Zhao L et al (2009) Evaluation of Chinese tea by the electronic tongue: correlation with sensory properties and classification according to geographical origin and grade level. Food Res Int 42:1462–1467

    Article  Google Scholar 

  • Henry RJ (1997) Practical applications of plant molecular biology. Chapman and Hall, London

    Book  Google Scholar 

  • Hertog MGL, Hollman PCH, van de Putte B (1993) Content of potentially anticarcinogenic flavonoids of tea infusions, wines and fruit juices. J Agric Food Chem 41:1242–1246

    Article  CAS  Google Scholar 

  • Hewavitharanage P, Karunaratne S, Kumar SN (1999) Effect of caffeine on shot hole borer beetle Xyleborus fornicatus of tea Camellia sinensis. Phytochem 51:35–41

    Article  CAS  Google Scholar 

  • Ho CT, Zheng X, Li S (2015) Tea aroma formation. Food Sci Hum Wellness 4(1):9–27. https://doi.org/10.1016/j.fshw.2015.04.001

    Article  Google Scholar 

  • Hollman PCH, de Vries JHM, van Leeuwen SD et al (1995) Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr 62:1276–1282

    Article  CAS  PubMed  Google Scholar 

  • Horanni R, Engelhardt UH (2013) Determination of amino acids in white, green, black, oolong, pu-erh teas and tea products. J Food Compos Anal 31:94–100. https://doi.org/10.1016/j.jfca.2013.03.005

    Article  CAS  Google Scholar 

  • IPGRI (1997) Descriptors for tea (Camellia sinensis). IPGRI, International Plant Genetic Resource Institute, Rome

    Google Scholar 

  • Janet TC, John WK, Thomas K et al (2015) Effect of seasons on theanine levels in different Kenyan commercially released tea cultivars and its variation in different parts of the tea shoot. Food Nutr Sci. https://doi.org/10.4236/fns.2015.615149

    Article  Google Scholar 

  • Jayasekera S, Kaur L, Molan A et al (2014) Effects of season and plantation on phenolic content of unfermented and fermented Sri Lankan tea. Food Chem 152:546–551

    Article  CAS  PubMed  Google Scholar 

  • Jeganathan B, Punyasiri PAN, Kottawa-Arachchi JD et al (2016) Genetic variation of flavonols quercetin, myricetin, and kaempferol in the Sri Lankan tea (Camellia sinensis L.) and their health-promoting aspects. Int J Food Sci 2016:1–9. https://doi.org/10.1155/2016/6057434

    Article  CAS  Google Scholar 

  • Jin JQ, Ma JQ, Ma CL et al (2014) Determination of catechin content in representative Chinese tea germplasms. J Agric Food Chem 62:9436–9441

    Article  CAS  PubMed  Google Scholar 

  • Joshi R, Rana A, Gulati A (2015) Studies on quality of orthodox teas made from anthocyanin-rich tea clones growing in Kangra valley, India. Food Chem 176:357–366. https://doi.org/10.1016/j.foodchem.2014.12.067

    Article  CAS  PubMed  Google Scholar 

  • Juneja LR, Chu DC, Okubo T et al (1999) l-Theanine—a unique amino acid of green tea and its relaxation effect in humans. Trends Food Sci Technol 10:199–204

    Article  CAS  Google Scholar 

  • Karori SM, Wachira FN, Ngure RM, Mireji PO (2014) Polyphenolic composition and antioxidant activity of Kenyan tea cultivars. J Pharmacogn Phytochem 3:105–116

    Google Scholar 

  • Kato M, Mizuno K, Fujimura T et al (1990) Purification and characterization of caffeine synthase from tea leaves. Plant Physiol 120:579–586

    Article  Google Scholar 

  • Kerio L, Wachira FN, Rotich MK (2012) Characterization of anthocyanins in Kenyan teas: extraction and identification. Food Chem 131:31–38. https://doi.org/10.1016/j.foodchem.2011.08.005

    Article  CAS  Google Scholar 

  • Kong JM, Chia LS, Goh NK, Chia TF (2003) Analysis and biological activities of anthocyanins. A review. Phytochemistry 64:923–933

    Article  CAS  PubMed  Google Scholar 

  • Kottawa-Arachchi JD, Gunasekare MTK, Ranatunga MAB et al (2013) Use of biochemical compounds in tea germplasm characterization and its implications in tea breeding in Sri Lanka. J Natn Sci Foundation Sri Lanka 41:309–318. https://doi.org/10.4038/jnsfsr.v41i4.6252

    Article  CAS  Google Scholar 

  • Kottawa-Arachchi JD, Gunasekare MTK, Ranatunga MAB et al (2014) Biochemical characteristics of tea (Camellia L. spp.) germplasm accessions in Sri Lanka: correlation between black tea quality parameters and organoleptic evaluation. Int J Tea Sci 10:3–13

    Google Scholar 

  • Kumar SN, Hewavitharanage P, Adikaram NKB (1995) Attack on tea by Xyleborus fornicatus: inhibition of the symbiote, Mona crosporiumambrosium, by Caffeine. Phytochem 40:1113–1116

    Article  CAS  Google Scholar 

  • Lee JE, Lee BJ, Chung JO et al (2010) Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites: a (1)H NMR-based metabolomics study. J Agric Food Chem 58:10582–10589

    Article  CAS  PubMed  Google Scholar 

  • Li J, Hashimoto F, Shimizu K, Sakata Y (2013) Phytochemistry chemical taxonomy of red-flowered wild Camellia species based on floral anthocyanins. Phytochemistry 85:99–106. https://doi.org/10.1016/j.phytochem.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  • Lin JK, Lin CL, Liang YC et al (1998) Survey of catechins, gallic acid, and methylxanthines in green, oolong, pu-erh, and black teas. J Agric Food Chem 46:3635–3642

    Article  CAS  Google Scholar 

  • Liyanage AC, de Silva MJ, Ekanayake A (1988) Analysis of major fatty acids in tea. Sri Lanka J Tea Sci 57:46–49

    Google Scholar 

  • Lopez SJ, Thomas J, Pius PK et al (2005) A reliable technique to identify superior quality clones from tea germplasm. Food Chem 91:771–778. https://doi.org/10.1016/j.foodchem.2004.10.005

    Article  CAS  Google Scholar 

  • Maeda-Yamamoto M, Sano M, Matsuda N et al (2001) The change of epigallocatechin-3-O-(3-O-methyl) gallate content in tea of different varieties, tea seasons of crop and processing method. J Jpn Soc Food Sci Technol 48:64–68

    Article  CAS  Google Scholar 

  • Maeda-Yamamoto M, Nagaya H, Mitsumori T et al (2007) A change of chemical components and effects on anti-allergic activity in “Benifuuki” green tea which was produced with a low caffeine processing mechine. Jpn J Food Eng 8:109–116

    Article  Google Scholar 

  • Magoma GN, Wachira FN, Obanda M et al (2000) The use of catechins as biochemical markers in diversity studies of tea (Camellia sinensis). Genet Resour Crop Evol 47:107–114

    Article  Google Scholar 

  • Magoma GN, Wachira FN, Imbuga MO, Agong SG (2003) Biochemical differentiation In Camellia sinensis and its wild relatives as revealed by isozyme and catechin patterns. Biochem Syst Ecol 31:995–1010

    Article  CAS  Google Scholar 

  • Mahanta PK, Hazarika M (1985) Chlorophylls and degradation products in orthodox and CTC black teas and their influence on shade of colour and sensory quality in relation to thearubigins. J Sci Food Agric 36:1133–1139

    Article  CAS  Google Scholar 

  • Maritim TK, Kamunya SM, Mireji P et al (2015) Physiological and biochemical response of tea [Camellia sinensis (L.) O. Kuntze] to water-deficit stress. J Hortic Sci Biotechnol 90:395–400

    Article  CAS  Google Scholar 

  • Miyagishima A, Fujiki S, Okimura A et al (2011) Novel decaffeination of green tea using a special picking method and shortening of the rolling process. Food Chem 125:878–883. https://doi.org/10.1016/j.foodchem.2010.09.058

    Article  CAS  Google Scholar 

  • Mohanpuria P, Kumar V, Ahuja PS, Yadav SK (2011) Producing low-caffeine tea through post-transcriptional silencing of caffeine synthase mRNA. Plant Mol Biol 76:3–34

    Article  CAS  Google Scholar 

  • Mondal TK (2014) Molecular markers. In: Breeding and biotechnology of tea and its wild species. Springer (India) Pvt. Ltd., New Delhi, pp 93–114

  • Mukhopadhyay M, Mondal TK, Chand PK (2016) Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review. Plant Cell Rep 35:255–287. https://doi.org/10.1007/s00299-015-1884-8

    Article  CAS  PubMed  Google Scholar 

  • Mur LAJ, Hauck B, Winters A et al (2015) The development of tea blister caused by Exobasidium vexans in tea (Camellia sinensis) correlates with the reduced accumulation of some antimicrobial metabolites and the defence signals salicylic and jasmonic acids. Plant Pathol. https://doi.org/10.1111/ppa.12364

    Article  Google Scholar 

  • Muthaiya MJ, Nagella P, Thiruvengadam M, Mandal AKA (2013) Enhancement of the productivity of tea (Camellia sinensis) secondary metabolites in cell suspension cultures using pathway inducers. J Crop Sci Biotechnol 16:143–149

    Article  Google Scholar 

  • Muthiani MA, Wanyoko JK, Wachira FN et al (2016) Potential use of Kenyan tea cultivars in development of high value diversified products potential use of Kenyan tea cultivars in development of high value diversified products. Int J Tea Sci 12:30–48. https://doi.org/10.20425/ijts.v0iof.9599

    Article  Google Scholar 

  • Nafees M, Jaskani MJ, Ahmad S et al (2016) Biochemical diversity in wild and cultivated pomegranate (Punica granatum L.) in Pakistan. J Hortic Sci Biotechnol 92:199–205. https://doi.org/10.1080/14620316.2016.1252250

    Article  CAS  Google Scholar 

  • Ni S, Yao M, Chen L et al (2008) Germplasm and breeding research of tea plant based on DNA marker approaches. Front Agric China 2:200–207. https://doi.org/10.1007/s11703-008-0043-1

    Article  Google Scholar 

  • Obanda M, Owuor PO, Njuguna CK (1992) The impact of clonal variation of total polyphenols content and polyphenol oxidase activity of fresh tea shoots on plain black tea quality parameters. Tea 13:129–133

    Google Scholar 

  • Obanda M, Owuor PO, Mang’oka R, Kavoi MM (2004) Changes in thearubigin fractions and theaflavin levels due to variations in processing conditions and their influence on black tea liquor brightness and total colour. Food Chem 85:163–173

    Article  CAS  Google Scholar 

  • Ogino A, Tanaka J, Taniguchi F et al (2009) Detection and characterization of caffeine-less tea plants originated from interspecific hybridization. Breed Sci 59:277–283

    Article  CAS  Google Scholar 

  • Ortega-Regules A, Romero-Cascales I, López-Roca JM et al (2006) Anthocyanin fingerprint of grapes: environmental and genetic variations. J Sci Food Agric 86:1460–1467

    Article  CAS  Google Scholar 

  • Owuor P, Takeo T, Horita H (1987) Differentiation of clonal teas by terpene index. J Sci Food Agric 40:341–345

    Article  CAS  Google Scholar 

  • Pandotra P, Gupta AP, Husain MK et al (2013) Evaluation of genetic diversity and chemical profile of ginger cultivars in north-western Himalayas. Biochem Syst Ecol 48:281–287. https://doi.org/10.1016/j.bse.2013.01.004

    Article  CAS  Google Scholar 

  • Pilgrim TS, Watling RJ, Grice K (2010) Application of trace element and stable isotope signatures to determine the provenance of tea (Camellia sinensis) samples. Food Chem 118:921–926. https://doi.org/10.1016/j.foodchem.2008.08.077

    Article  CAS  Google Scholar 

  • Piyasundara JHN, Gunasekare MTK, Wickramasinghe IP (2009) Characterization of tea (Camellia sinensis L.) germplasm in Sri Lanka using morphological descriptors. Sri Lanka J Tea Sci 74:31–39

    Google Scholar 

  • Ponmurugan P, Baby UI (2007) Morphological, physiological and isochemical changes in resistant and susceptible cultivars of tea in relation to phomopsis disease. Plant Pathol J 6:91–94

    Article  Google Scholar 

  • Punyasiri PAN, Abeysinghe ISB, Kumar V (2005) Preformed and induced chemical resistance of tea plant against Exobasidium vexans infection. J Chem Ecol 31:1315–1323

    Article  CAS  PubMed  Google Scholar 

  • Punyasiri PAN, Jeganathan B, Kottawa-Arachchi JD et al (2015) New sample preparation method for quantification of phenolic compounds of tea (Camellia sinensis (L.) O. Kuntze): a polyphenol rich plant. J Anal Methods Chem. 2015:1–6. https://doi.org/10.1155/2015/964341

    Article  CAS  Google Scholar 

  • Punyasiri PAN, Jeganathan B, Kottawa-Arachchi JD et al (2017) Genotypic variation in biochemical compounds of the Sri Lankan tea (Camellia sinensis L.) accessions and their relationships to quality and biotic stresses. J Hortic Sci Biotechnol 92:502–512. https://doi.org/10.1080/14620316.2017.1289070

    Article  CAS  Google Scholar 

  • Rajapaksha D, Waduge V, Alvarez P et al (2017) XRF to support food traceability studies: classification of Sri Lankan tea based on their region of origin. X-Ray Spectrom 46:220–224. https://doi.org/10.1002/xrs.2748

    Article  CAS  Google Scholar 

  • Rajkumar S, Karthigeyan S, Sud RK et al (2010) Genetic diversity of Indian tea (Camellia sinensis (L.) Kuntze) germplasm detected using morphological characteristics. J Cell Plant Sci 1:13–22

    Google Scholar 

  • Ranatunga MAB, Kottawa-Arachchi JD, Gunasekare MTK et al (2015) Alkaloids and flavonols as chemotaxonomic markers: potential applications in Camellia sinensis (Tea) breeding. In: Postgraduate Institute of Science Research Congress. Postgraduate Institute of Science, University of Peradeniya, Pradeniya, Sri Lanka

  • Ravichandran R (2002) Carotenoid composition distribution and degradation to flavor volatiles during black tea manufacture and the effect of carotenoid supplementation on tea quality and aroma. Food Chem 78:23–28

    Article  CAS  Google Scholar 

  • Ren G, Wang S, Ning J et al (2013) Quantitative analysis and geographical traceability of black tea using Fourier transform near-infrared spectroscopy (FT-NIRS). Food Res Int 53:822–826

    Article  CAS  Google Scholar 

  • Robertson A (1992) The chemistry and biochemistry of black tea production—the non-volatiles. In: Willson KC, Clifford MN (eds) Tea: cultivation to consumption. Chapman & Hall Publication, London, pp 555–601

    Chapter  Google Scholar 

  • Rodriguez-Mateos A, Vauzour D, Krueger CG et al (2014) Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 88:1803–1853

    Article  CAS  PubMed  Google Scholar 

  • Sabhapondit S, Karak T, Bhuyan LP, et al (2012) Diversity of catechins in Notheast Indian tea cultivars. Sci World J. Article ID 485193. https://doi.org/10.1100/2012/485193

  • Saijo R (1983) Pathway of gallic acid biosynthesis and its esterification with catechins in young tea shoots. Agric Biol Chem 47:455–460

    CAS  Google Scholar 

  • Saito K, Nakamura Y (2017) Development and properties of green tea with reduced caffeine. J Exp Agric Int 17:1–6. https://doi.org/10.9734/JEAI/2017/36537

    Article  Google Scholar 

  • Sanderson GW (1972) The chemistry of tea and tea manufacturing, structural and functional aspects of phytochemistry. Academic Press, London

    Google Scholar 

  • Sanderson GW, Selvendran RR (1965) The organic acids in tea plants. A study of the non-volatile organic acids separated on silica gel. J Sci Food Agric 16:251–258

    Article  CAS  Google Scholar 

  • Saravanan M, John KMM, Kumar RR et al (2005) Genetic diversity of UPASI tea clones (Camellia sinensis (L.) O. Kuntze) on the basis of total catechins and their fractions. Phytochem 66:561–565

    Article  CAS  Google Scholar 

  • Schuh C, Schieberle P (2006) Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: quantitative differences between tea leaves and infusion. J Agric Food Chem 54:916–924

    Article  CAS  PubMed  Google Scholar 

  • Sealy R (1958) A revision of genus Camellia. The Royal Horticultural Society, London

    Google Scholar 

  • Sharangi AB (2009) Medicinal and therapeutic potentialities of tea (Camellia sinensis L.)—a review. Food Res Int 42:529–535. https://doi.org/10.1016/j.foodres.2009.01.007

    Article  CAS  Google Scholar 

  • Shibasaki-Kitakawa N, Takeishi J, Yonemoto T (2003) Improvement of catechin productivity in suspension cultures of tea callus cells. Biotechnol Prog 19:655–658

    Article  CAS  PubMed  Google Scholar 

  • Su MH, Tsou CH, Hsieh CF (2007) Morphological comparisons of Taiwan native wild tea plant (Camellia sinensis (L.) O. Kuntze forma formosensis Kitamura) and two closely related taxa using numerical methods. Taiwania 52:70–83

    Google Scholar 

  • Sud RG, Baru A (2000) Seasonal variations in theaflavins, thearubigins, total colour and brightness of Kangra orthodox tea (Camellia sinensis (L) O Kuntze) in Himachal Pradesh. J Sci Food Agric 80:1291–1299

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97. https://doi.org/10.1016/j.tplants.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  • Takeda Y (1994) Differences in caffeine and tannin contents between tea cultivars and application to tea breeding. Jpn Agric Res Quart 28:117–123

    CAS  Google Scholar 

  • Takeo T (1983) Effect of clonal specificity of the monoterpene alcohol composition of tea shoots on black tea aroma profile. Jpn Agric Res Quart 17(2):120–124

    CAS  Google Scholar 

  • Takeo T, Mahanta PK (1983) Comparison of black tea aromas of orthodox and CTC tea and of black teas made from different varieties. J Sci Food Agric 34:307–310

    Article  CAS  Google Scholar 

  • Tan J, Engelhardt UH, Lin Z et al (2017) Flavonoids, phenolic acids, alkaloids and theanine in different types of authentic Chinese white tea samples. J Food Compos Anal 57:8–15

    Article  CAS  Google Scholar 

  • Taylor S, Baker D, Owuor P et al (1992) A model for predicting black tea quality from the carotenoid and chlorophyll composition of fresh green tea leaf. J Sci Food Agric 58:185–191. https://doi.org/10.1002/jsfa.2740580205

    Article  CAS  Google Scholar 

  • Ullah J, Shah AH, Nisar M et al (2016) Biochemical characterization of lentil germplasm for genetic diversity. Plant Cell Biotechnol Mol Biol 17:7–13

    Google Scholar 

  • Upadhyaya H, Panda SK (2013) Abiotic stress responses in tea [Camellia sinensis (L.) O. Kuntze]: an overview. Rev Agric Sci 1:1–10. https://doi.org/10.7831/ras.1.1

    Article  Google Scholar 

  • Vrhovsek U, Masuero D, Palmieri L, Mattivi F (2012) Identification and quantification of flavonol glycosides in cultivated blueberry cultivars. J Food Compos Anal 25:9–16

    Article  CAS  Google Scholar 

  • Vuong QV, Bowyer MC, Roach PD (2011) l-Theanine: properties, synthesis and isolation from tea. J Sci Food Agric 91:1931–1939. https://doi.org/10.1002/jsfa.4373

    Article  CAS  PubMed  Google Scholar 

  • Vuong QV, Golding JB, Stathopoulos CE, Roach PD (2013) Effects of aqueous brewing solution pH on the extraction of the major green tea constituents. Food Res Int 53:713–719. https://doi.org/10.1016/j.foodres.2012.09.017

    Article  CAS  Google Scholar 

  • Wachira F, Ng W, Omolo J, Mamati G (2002) Genotype × environment interactions for tea yields. Euphytica 127:289–296

    Article  CAS  Google Scholar 

  • Wang L, Xu R, Hu B et al (2010a) Analysis of free amino acids in Chinese teas and flower of tea plant by high performance liquid chromatography combined with solid-phase extraction. Food Chem 123:1259–1266. https://doi.org/10.1016/j.foodchem.2010.05.063

    Article  CAS  Google Scholar 

  • Wang XC, Chen L, Ma CL et al (2010b) Genotypic variation of beta-carotene and lutein contents in tea germplasms, Camellia sinensis (L.) O. Kuntze. J Food Compos Anal 23:9–14. https://doi.org/10.1016/j.jfca.2009.01.016

    Article  CAS  Google Scholar 

  • Wang YS, Gao LP, Shan Y et al (2012a) Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Sci Hortic 141:7–16

    Article  CAS  Google Scholar 

  • Wang YS, Gao LP, Wang ZR et al (2012b) Light-induced expression of genes involved in phenylpropanoid biosynthetic pathways in callus of tea (Camellia sinensis (L.) O. Kuntze). Sci Hortic 133:72–83

    Article  CAS  Google Scholar 

  • Wei K, Wang L, Zhou J et al (2011) Catechin contents in tea (Camellia sinensis) as affected by cultivar and environment and their relation to chlorophyll contents. Food Chem 125:44–48

    Article  CAS  Google Scholar 

  • Wight W (1959) Nomenclature and classification of the tea plant. Nature 183:1728–1729

    Article  Google Scholar 

  • Wight W (1962) Tea classification revised. Curr Sci 31:298–299

    Google Scholar 

  • Wiseman SA, Balentine DA, Frei B (1997) Antioxidants in tea. Crit Rev Food Sci Nutr 37:705–718

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Xu H, Héritier J, Andlauer W (2012) Determination of catechins and flavonol glycosides in Chinese tea varieties. Food Chem 132:144–149. https://doi.org/10.1016/j.foodchem.2011.10.045

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Baldermann S, Watanabe N (2013) Recent studies of the volatile compounds in tea. Food Res Int 53(2):585–599. https://doi.org/10.1016/j.foodres.2013.02.011

    Article  CAS  Google Scholar 

  • Yang T, Zhu Y, Shao CY et al (2016) Enantiomeric analysis of linalool in teas using headspace solid-phase microextraction with chiral gas chromatography. Ind Crops Prod 83:17–23. https://doi.org/10.1016/j.indcrop.2015.12.025

    Article  CAS  Google Scholar 

  • Yao MZ, Chen L (2012) Tea germplasm and breeding in China. In: Chen L, Apostolides Z, Chen ZM (eds) Global tea breeding—achievements, challenges and perspectives. Zhejiang University Press, Hangzhou and Springer-Verlag, Berlin, Heidelberg, pp 13–58

    Chapter  Google Scholar 

  • Yao LH, Jiang YM, Shi J et al (2004) Flavonoids in Food and Their Health Benefits. Plant Foods Hum Nutr 59:113–122

    Article  CAS  PubMed  Google Scholar 

  • Zagoskina NV, Goncharuk EA, Alyavina AK (2007) Effect of cadmium on the phenolic compounds formation in the callus cultures derived from various organs of the tea plant. Russ J Plant Physiol 54:237–243

    Article  CAS  Google Scholar 

  • Zhang Y, Chen B, Huang Z, Shi Z (2004) Preparative isolation and purification of l-Theanine by HPLC. J Liq Chromatogr Relat Technol 27:875–884

    Article  CAS  Google Scholar 

  • Zhao M, Ma Y, Wei ZZ et al (2011) Determination and comparison of types, γ-aminobutyric acid (GABA) content in pu-erh and other of Chinese tea. J Agric Food Chem 59:3641–3648

    Article  CAS  PubMed  Google Scholar 

  • Zheng XQ, Li QS, Xiang LP, Liang YR (2016) Recent advances in volatiles of teas: review. Molecules 21(338):1–12

    Google Scholar 

  • Zhu Y, Shao CY, Lv HP et al (2017) Enantiomeric and quantitative analysis of volatile terpenoids in different teas (Camellia sinensis). J Chromatogr A 1490:177–190. https://doi.org/10.1016/j.chroma.2017.02.013

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dananjaya Kottawa-Arachchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kottawa-Arachchi, J.D., Gunasekare, M.T.K. & Ranatunga, M.A.B. Biochemical diversity of global tea [Camellia sinensis (L.) O. Kuntze] germplasm and its exploitation: a review. Genet Resour Crop Evol 66, 259–273 (2019). https://doi.org/10.1007/s10722-018-0698-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-018-0698-2

Keywords

Navigation