Skip to main content
Log in

Characterization of genetic diversity and structures in natural Glycine tomentella populations on the southeast islands of China

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Glycine tomentella Hayata is a species of Glycine Willd. subgenus Glycine, and in China it is distributed along the southeast coast. In this study, 11 natural G. tomentella populations were collected and their genetic diversity levels and population structures were analyzed using 25 simple sequence repeat (SSR) markers. The number of alleles per locus averaged 7.16 and ranged from 2 to 17. The expected heterozygosity (He) per locus averaged 0.60, varying from 0.19 to 0.86. The G. tomentella populations on these Chinese islands showed a greater average genetic variation (60.96%) among populations and gene differentiation index (Gst= 0.607), and a lower average within-population genetic variation (33.47%) and gene flow (Nm= 0.162). In this study, these G. tomentella island populations were characterized by a relatively greater average multilocus outcrossing rate of 5.74%, which may the result of heterogeneity owing to the perennation of G. tomentella. A spatial autocorrelation analysis revealed that populations within a radius of approximately 30.45 km had positive and significant genetic relationships. The Neighbor-Joining (NJ) and STRUCTURE analyses strongly showed a pattern of ‘island differentiation’ for the populations on southeast islands of China and also suggested that some genetic interconnection occurred along the southeast coast of China. The F-statistics suggested that geographically different G. tomentella populations had specific population structures. We propose that when collecting this species as a genetic resource, every G. tomentella population should be sampled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bau T, Xu B, Zhuang BC (1993) A brief report of cytology study on Chinese subgenus Glycine. J Jilin Agric Univ 15:218 (in Chinese)

    Google Scholar 

  • Brown AHD, Doyle JL, Grace JP, Doyle JJ (2002) Molecular phylogenetic relationships within and among diploid races of Glycine tomentella (Leguminosae). Aust Syst Bot 15:37–47

    Article  Google Scholar 

  • Chen LL, Liu XD, Zhao HK, Yuan CP, Wang YN, Xu MZ, Wang YM (2013) Genetic diversity of G. tabacina from Meizhou Island of Fujian Province. Soybean Sci 32:286–290 (in Chinese)

    CAS  Google Scholar 

  • Chung G, Singh RJ (2008) Broadening the genetic base of soybean: a multidisciplinary approach. Crit Rev Plant Sci 27:295–341

    Article  CAS  Google Scholar 

  • Costa TRD, Filho PSV, Gonçalvesvidigal MC, Galván MZ, Lacanallo GF, Silva LID, Kvitschal MV (2013) Genetic diversity and population structure of sweet cassava using simple sequence repeat (SSR) molecular markers. Afr J Biotechnol 12:1040–1048

    Google Scholar 

  • Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, VanToai TT, Lohnes DG, Chung J, Specht JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490

    Article  CAS  Google Scholar 

  • Doyle MJ, Brown AHD (1985) Numerical analysis of isozyme variation in Glycine tomentella. Biochem Syst Ecol 13:413–419

    Article  CAS  Google Scholar 

  • Doyle MJ, Grant JE, Brown AHD (1986) Reproductive isolation between isozyme groups of Glycine tomentella (Leguminosae), and spontaneous doubling in their hybrids. Aust J Bot 34:523–535

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Fujita R, Ohara M, Okazaki K, Shimamoto Y (1997) The extent of natural cross-pollination in wild soybean (Glycine soja). J Hered 88:124–128

    Article  Google Scholar 

  • Gao X, Qian J, Ma YH, Zheng SZ (2002) Research on chromosomes of perennial wild soybeans in China. J Fudan Univ (Nat Sci) 41:717–719 (in Chinese)

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). My Publications

  • Guo J, Liu YF, Wang YS, Chen JJ, Li YH, Huang HW, Qiu LJ, Wang Y (2012) Population structure of the wild soybean (Glycine soja) in China: implications from microsatellite analyses. Ann Bot 110:777–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hang Y, Jin Y, Lu BR (2004) Genetic diversity of the endangered species Psathyrostachys huashanica in China and its strategic conservation. J Fudan Univ (Nat Sci) 43:260–266 (in Chinese)

    Google Scholar 

  • Hao D, Zhang Z, Cheng Y, Chen G, Lu H, Mao Y, Shi M, Huang X, Zhou G, Xue L (2015) Identification of genetic differentiation between waxy and common maize by SNP genotyping. PLoS ONE 10:e0142585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayata B (1920) Icones Plantarum Formosanarum nec non et Contributiones ad Floram Formosanam; or, Icones of the Plants of Formosa, and Materials for a Flora of the Island, based on a study of the collections of the botanical survey of the Government of Formosa, vol 9. Bureau of Forestry, Industries, Government of Formosa, Taihoku, p 26

    Google Scholar 

  • He S, Wang Y, Volis S, Li D, Yi T (2012) Genetic diversity and population structure: implications for conservation of wild soybean (Glycine soja Sieb. et Zucc.) based on nuclear and chloroplast microsatellite variation. Int J Mol Sci 13:12608–12628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiang YT, Chiang YC, Kaizuma N (1992) Genetic diversity in natural populations of wild soybean in Iwate Prefecture, Japan. J Hered 83:325–329

    Article  Google Scholar 

  • Kollopara KP, Singh RJ, Hymowitz T (1994) Genomic diversity and multiple origins of tetraploid (2n = 78, 80) Glycine tomentella. Genome 37:448–459

    Article  Google Scholar 

  • Kuroda Y, Kaga A, Tomooka N, Vaughan DA (2006) Population genetic structure of Japanese wild soybean (Glycine soja) based on microsatellite variation. Mol Ecol 15:959–974

    Article  CAS  PubMed  Google Scholar 

  • Lin DG (1980) Eustacy in Fujian during the Quaternary Period. Chin Sci Bull 25:1134–1136 (in Chinese)

    Article  Google Scholar 

  • Liu KJ, Muse SV (2005) POWERMARKER: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Maggioni L, von Bothmer R, Poulsen G, Branca F, Bagger Jørgensen R (2014) Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy. Hereditas 151:145–158

    Article  PubMed  Google Scholar 

  • Narzary D, Verma S, Mahar KS, Rana TS (2015) A rapid and effective method for isolation of genomic DNA from small amount of silica-dried leaf tissues. Nat Acad Sci Lett 38:441–444

    Article  CAS  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data II. Gene frequency data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson K, Bothmer RV (2002) Genetic diversity amongst landraces of rye (Secale cereale L.) from northern Europe. Hereditas 136:29–38

    Article  PubMed  Google Scholar 

  • Pfeil BE, Craven LA, Brown AHD, Murray BG, Doyle JJ (2006) Three new species of northern Australian Glycine (Fabaceae, Phaseolae), G. gracei, G. montis-douglas and G. syndetika. Austral Syst Bot 19:245–258

    Article  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA, Vasal SK, Srinivasan G, Bohn M, Frisch M (2003) Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Sci 43:1275–1282

    Article  Google Scholar 

  • Singh RJ (2010) Methods for producing fertile crosses between wild and domestic soybean species: US, US7842850

  • Singh RJ, Nelson RL (2015) Intersubgeneric hybridization between Glycine max and G. tomentella: production of F1, amphidiploid, BC1, BC2, BC3, and fertile soybean plants. Theor Appl Genet 128:1117–1136

    Article  CAS  PubMed  Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1987) Polyploid complexes of Glycine tabacina (Labill.) Benth. and G. tomentella Hayata revealed by cytogenetic analysis. Genome 29:490–497

    Article  Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1990) Backcross-derived progeny from soybean and Glycine tomentella Hayata intersubgeneric hybrids. Crop Sci 30:871–874

    Article  Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1993) Backcross (BC2–BC4)-derived fertile plants from Glycine max and G. tomentella intersubgeneric hybrids. Crop Sci 33:1002–1007

    Article  Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1998) Monosomic alien addition lines derived from Glycine max (L.) Merr. and G. tomentella Hayata: production, characterization, and breeding behavior. Crop Sci 38:1483–1489

    Article  Google Scholar 

  • Song QJ, Jia GF, Zhu YL, Grant D, Nelson RT, Hwang EY, Hyten DL, Cregan PB (2010) Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean. Crop Sci 50:1950–1960

    Article  CAS  Google Scholar 

  • Tateishi Y, Ohashi H (1992) Taxonomic studies on Glycine of Taiwan. J Jpn Bot 67:127–147

    Google Scholar 

  • Tindale M (1986) Taxonomic notes on three Australian and Norfolk Island species of Glycine Willd. (Fabaceae: Phaseolae) including the choice of a neotype for G. clandestina Wendl. Brunonia 9:179

    Article  Google Scholar 

  • Wang KJ, Li XH (2012) Genetic characterization and gene flow in different geographical-distance neighbouring natural populations of wild soybean (Glycine soja Sieb. & Zucc.) and implications for protection from GM soybeans. Euphytica 186:817–830

    Article  CAS  Google Scholar 

  • Wang KJ, Li XH, Yan MF (2014) Microsatellite markers reveal genetic diversity of wild soybean in different habitats and implications for conservation strategies (Glycine soja) in China. Conserv Genet 15:605–618

    Article  CAS  Google Scholar 

  • Wang Y, Ghouri F, Shahid MQ, Naeem M, Baloch FS (2017) The genetic diversity and population structure of wild soybean evaluated by chloroplast and nuclear gene sequences. Biochem Syst Ecol 71:170–178

    Article  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Yao YT, Harff J, Meyer M, Zhan WH (2009) Reconstruction of paleocoastlines for the northwestern South China Sea since the last glacial maximum. Sci China Ser D Earth Sci 52:1127–1136

    Article  CAS  Google Scholar 

  • Yeh FC, Yang RC, Boyle T (1999) Popgene version 1.32: Microsoft Windows-based freeware for population genetic analysis. University of Alberta, Edmonton

    Google Scholar 

  • Zhang R, Liu JQ, Yang M, Zhu GH (2011) The extracts from Glycine tomentella roots used to produce traditional Chinese medicine for the treatment of rheumatoid arthritis: Patent, China, CN102119954A (in Chinese)

  • Zou JJ, Singh RJ, Hymowitz T (2004) SSR marker and ITS cleaved amplified polymorphic sequence analysis of soybean × Glycine tomentella intersubgeneric derived lines. Theor Appl Genet 109:769–774

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by project “Sci and Tech Innovation Program of Chinese Academy of Agricultural Sciences” and “Crop Germplasm Resources Protection (Item No. 2130135-09) from the Ministry of Agriculture of the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Jing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XD., Li, XH., Zhang, ZW. et al. Characterization of genetic diversity and structures in natural Glycine tomentella populations on the southeast islands of China. Genet Resour Crop Evol 66, 47–59 (2019). https://doi.org/10.1007/s10722-018-0694-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-018-0694-6

Keywords

Navigation