Genetic Resources and Crop Evolution

, Volume 65, Issue 4, pp 1187–1194 | Cite as

Wild crop relative populations hot-spots of diversity are hot-spots of introgression in the case of pearl millet

  • Aichatou Assoumane
  • Carole Blay
  • Abdel-Kader Alio Sanda
  • Cédric Mariac
  • Jean-Louis Pham
  • Gilles Bezançon
  • Yves Vigouroux
Research Article


Wild crop relatives are unique genetic resources for crop adaptation. Increasing pressure from agriculture threatens these populations both by reducing their habitats and by creating opportunities for wild-cultivated hybridization. In this study, we assessed the diversity of 38 wild pearl millet populations covering the whole known distribution of the species in Africa, which extends from Senegal to Sudan. Using genetic analyses of 10 cultivated varieties as control, we demonstrate the high diversity harbored by these wild populations. Diversity patterns suggest a diversity hot-spot in the southern part of the wild population’s range. However, this high wild genetic diversity could partly be explained by introgression from cultivated varieties. Such introgression is widespread in the Sahel. We validate the impact of cultivated introgression on the diversity of the wild population using a genetic introgression model. The introgression distorts the real assessment of the diversity of the wild population, and the burden of this gene flow compromises the long term survival of the wild populations’ original genome. Our study also questions the long term survival of the crop’s wild relatives.


Domestication Wild population diversity Diversity hot-spot Conservation genetics Pennisetum glaucum 



JL and YV are supported by the ARCAD project funded by the Agropolis Fondation. AA and YV are supported by the JEAI AVACLI funded by IRD.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10722_2018_607_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 kb)
10722_2018_607_MOESM2_ESM.doc (206 kb)
Supplementary material 2 (DOC 205 kb)
10722_2018_607_MOESM3_ESM.pptx (70 kb)
Supplementary material 3 (PPTX 70 kb)
10722_2018_607_MOESM4_ESM.doc (62 kb)
Supplementary material 4 (DOC 62 kb)
10722_2018_607_MOESM5_ESM.xlsx (38 kb)
Supplementary material 5 (XLSX 37 kb)
10722_2018_607_MOESM6_ESM.doc (136 kb)
Supplementary material 6 (DOC 136 kb)


  1. Castañeda-Álvarez NP, Khoury CK, Achicanoy HA et al (2016) Global conservation priorities for crop wild relatives. Nat Plants 2:16022. CrossRefPubMedGoogle Scholar
  2. Clotault J, Thuillet A-C, Buiron M et al (2012) Evolutionary history of pearl millet (Pennisetum glaucum [L.] R. Br.) and selection on flowering genes since its domestication. Mol Biol Evol 29:1199–1212. CrossRefPubMedGoogle Scholar
  3. Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563. CrossRefGoogle Scholar
  4. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. CrossRefPubMedGoogle Scholar
  5. Ewens WJ (2004) Mathematical population genetics. Springer, New-York, p 417pCrossRefGoogle Scholar
  6. Goldewijk KK (2001) Estimating global land use change over the past 300 years: the HYDE Database. Glob Biogeochem Cycles 15:417–433. CrossRefGoogle Scholar
  7. Goldewijk KK, Beusen A, van Drecht G, de Vos M (2011) The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob Ecol Biogeogr 20:73–86. CrossRefGoogle Scholar
  8. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from Updated from Goudet (1995)
  9. Guarino L, Lobell DB (2011) A walk on the wild side. Nat Clim Change 1:374–375. CrossRefGoogle Scholar
  10. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinform Oxf Engl 23:1801–1806. CrossRefGoogle Scholar
  11. Mittell EA, Nakagawa S, Hadfield JD (2015) Are molecular markers useful predictors of adaptive potential? Ecol Lett 18:772–778. CrossRefPubMedGoogle Scholar
  12. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedPubMedCentralGoogle Scholar
  13. Oumar I, Mariac C, Pham J-L, Vigouroux Y (2008) Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br.) as revealed by microsatellite loci. TAG Theor Appl Genet Theor Angew Genet 117:489–497. CrossRefGoogle Scholar
  14. Petit RJ, El Mousadik A (1996) High level of genetic differentiation for allelic richness among populations of the argan [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839CrossRefPubMedGoogle Scholar
  15. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  16. Pujol B, Pannell JR (2008) Reduced responses to selection after species range expansion. Science 321:96. CrossRefPubMedGoogle Scholar
  17. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237. CrossRefGoogle Scholar
  18. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  19. Tostain S (1992) Enzyme diversity in pearl millet (Pennisetum glaucum L.): 3. Wild millet. TAG Theor Appl Genet Theor Angew Genet 83:733–742. Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculté des Sciences et TechniquesUniversité Abdou MoumouniNiameyNiger
  2. 2.Institut de Recherche pour le Développement, Université de Montpellier, UMR DIADEMontpellierFrance
  3. 3.Institut de Recherche pour le DéveloppementNiameyNiger

Personalised recommendations