Genetic Resources and Crop Evolution

, Volume 63, Issue 2, pp 261–273 | Cite as

Variation of agronomic and qualitative traits and local adaptation of mountain landraces of winter rye (Secale cereale L.) from Val Venosta/Vinschgau (South Tyrol)

  • G. Peratoner
  • S. Seling
  • C. Klotz
  • C. Florian
  • U. Figl
  • A. O. Schmitt
Research Article


Landraces are thought to be well adapted to the environmental conditions of the region where they have evolved and to be highly tolerant to biotic and abiotic stress. There is indeed experimental evidence of that for several cereal species, but to our knowledge only scarce data is available on rye and none on rye landraces from South Tyrol in particular. For this region, assumptions rely mainly on historic documents or reports from the owners of the landraces. In a 3-year field experiment we described 13 landraces from Val Venosta/Vinschgau (South Tyrol, Italy), along with six modern population cultivars (CUL), at a mountain location. Depending on the available passport data, the landraces were assigned to two variety types: well documented landrace status (DLS) and uncertain landrace status (ULS). 14 traits concerning phenology, agronomy, indirect milling and baking quality as well as seed colour were investigated. Most of the traits representing the usual target of modern breeding were found to be dependent on the variety type. The results reflect well the expected differences between CUL and DLS, while ULS had an intermediate character. Winter hardiness and ripening time of both DLS and ULS, however, were found to be affected by the altitude of the site at which the landraces were collected, suggesting a certain adaptation of the landraces to the climatic conditions at the sites of origin.


Adaptation Agronomic traits Landraces Secale cereale L. South Tyrol Winter rye 



We thank C. Partl from the gene bank of the Land Tyrol, Austria, for supplying seed of several landraces, as well as S. Gottardi, A. Stampfl, S. Lammerich and G. Sansone for assistance in the field. P. Schilperoord provided useful information concerning the choice of the modern cultivars and the traditional uses of rye landraces in the Alps. The companies DANKO Plant Breeders, Saatzucht Edelhof, P. H. Petersen Saatzucht Lundsgaard and Beikircher Grünland are gratefully acknowledged for supplying free-of-charge seed of the investigated cultivars, the company Meraner Mühle (Merano/Meran, Italy) for lending free of charge the device to determine the falling number. We thank M. Pramsohler and two anonymous reviewers for useful comments and improvements to the text.


  1. ASTAT (Autonome Provinz Bozen – Südtirol. Landesinstitut für Statistik) (1984) Allgemeine Landwirtschaftszählung vom 24. Oktober 1982. Autonome Provinz Bozen – Südtirol, Bozen/BolzanoGoogle Scholar
  2. ASTAT (Autonome Provinz Bozen – Südtirol. Landesinstitut für Statistik) (2002) 5. Landwirtschaftszählung 2000. Autonome Provinz Bozen – Südtirol, Bozen/BolzanoGoogle Scholar
  3. ASTAT (Autonome Provinz Bozen – Südtirol. Landesinstitut für Statistik) (2013) 6. Landwirtschaftszählung 2010. Autonome Provinz Bozen – Südtirol, Bozen/BolzanoGoogle Scholar
  4. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  5. Camacho Villa TC, Maxted N, Scholten M, Ford-Lloyd B (2005) Defining and identifying crop landraces. Plant Genet Resour 3:373–384CrossRefGoogle Scholar
  6. Ceccarelli S (1996) Adaptation to low/high input cultivation. Euphytica 92:203–214CrossRefGoogle Scholar
  7. de Rachewiltz SW (1993) Brot im südlichen Tirol. Wielander, ArundaGoogle Scholar
  8. Diederichsen A, Solberg SØ, Jeppson S (2013) Morphological changes in Nordic spring wheat (Triticum aestivum L.) landraces and cultivars released from 1892 to 1994. Genet Resour Crop Evol 60:569–585CrossRefGoogle Scholar
  9. Ehdaie B, Waines JG (1989) Adaptation of landrace and improved spring wheat genotypes to stress environments. J Genet Breed 43:151–156Google Scholar
  10. Fischer K (1974) Agrargeographie des westlichen Südtirol. Der Vinschgau und seine Nebentäler. Braumüller, WienGoogle Scholar
  11. Grausgruber H, Bointner H, Tumpold R, Ruckenbauer P (2002) Genetic improvement of agronomic and qualitative traits of spring barley. Plant Breed 121:411–416CrossRefGoogle Scholar
  12. Hammer K, Diederichsen A (2009) Evolution, status and perspectives for landraces in Europe. In: Veteläinen M, Negri V, Maxted N (eds) European landraces: on-farm conservation, management and use. Bioversity Technical Bulletin 15, Bioversity International, Rome, pp 23–44Google Scholar
  13. Hammer K, Knüpffer H, Xhuveli L, Perrino P (1996) Estimating genetic erosion in landraces - two case studies. Genet Resour Crop Evol 43:329–336CrossRefGoogle Scholar
  14. ISTA (International Seed Testing Association) (1996) International rules for seed testing. Rules 1996. Seed Sci Technol 24:309–342Google Scholar
  15. Iwaki K, Haruna S, Niwa T, Kato K (2001) Adaptation and ecological differentiation in wheat with special reference to geographical variation of growth habit and Vrn genotype. Plant Breed 120:107–114CrossRefGoogle Scholar
  16. Jaradat AA (1991) Phenotypic divergence for morphological and yield-related traits among landrace genotypes of durum wheat from Jordan. Euphytica 52:155–164CrossRefGoogle Scholar
  17. Kato K, Yokoyama H (1992) Geographical variation in heading characters among wheat landraces, Triticum aestivum L., and its implication for their adaptability. Theor Appl Genet 84:259–265PubMedGoogle Scholar
  18. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621CrossRefGoogle Scholar
  19. Kühn F, Hammer K (1979) Das Ausklingen der Brandrodungskultur in Zentraleuropa. Kulturpflanze 27:165–173CrossRefGoogle Scholar
  20. Kursa MB, Rudnicki WR (2010) Feature selection with the Boruta package. J Stat Softw 36:1–13CrossRefGoogle Scholar
  21. Lutz-Dollinger B (1986) Buchweizenanbau und Buchweizenbauern in Südtirol. Universitätsverlag Wagner, InnsbruckGoogle Scholar
  22. Mair V (2003) Vinschgau war die Kornkammer Tirols. Südtiroler Landwirt 14:36Google Scholar
  23. Marchal L (1929) Tirols Pflanzenbau. Wien Landwirtsch Ztg 79:123–128Google Scholar
  24. Mayr E (1934) Die Bedeutung der alpinen Getreidelandsorten für die Pflanzenzüchtung und Stammesforschung mit besonderer Beschreibung der Landsorten in Nordtirol und Vorarlberg. Zeitschrift für Züchtung A: Pflanzenzüchtung 19:195–228Google Scholar
  25. Meier U (1997) Growth stages of mono- and dicotyledonous plants. Blackwell, BerlinGoogle Scholar
  26. Mercer K, Martinez-Vásquez A, Perales HR (2008) Asymmetrical local adaptation of maize landraces along an altitudinal gradient. Evol Appl 1:489–500PubMedPubMedCentralCrossRefGoogle Scholar
  27. Negri V, Maxted N, Veteläinen M (2009) European landrace conservation: an introduction. In: Veteläinen M, Negri V, Maxted N (eds) European landraces: on-farm conservation, management and use. Bioversity Technical Bulletin 15, Bioversity International, Rome, pp 1–22Google Scholar
  28. Onofri A, Carbonell EA, Piepho H-P, Mortimer AM, Cousens RD (2010) Current statistical issues in Weed Research. Weed Res 50:2–24Google Scholar
  29. Persson K, von Bothmer R (2002) Genetic diversity amongst landraces of rye (Secale cereale L.) from northern Europe. Hereditas 136:29–38PubMedCrossRefGoogle Scholar
  30. Persson K, von Bothmer R, Gullord M, Gunnarsson E (2006) Phenotypic variation and relationships in landraces and improved varieties of rye (Secale cereale L.) from northern Europe. Genet Resour Crop Evol 53:857–866CrossRefGoogle Scholar
  31. Peter R, Eschholz TW, Stamp P, Liedgens M (2006) Swiss maize landraces – Early vigour adaptation to cool conditions. Acta Agron Hung 54:329–336CrossRefGoogle Scholar
  32. Pswarayi A, van Eeuwijk FA, Ceccarelli S, Grando S, Comadran J, Russel JR, Pecchioni N, Tondelli A, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Thomas WTB, Romagosa I (2008) Changes in allele frequencies in landraces, old and modern barley cultivars of marker loci close to QTL for grain yield under high and low input conditions. Euphytica 163:435–447CrossRefGoogle Scholar
  33. Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58:177–186PubMedCrossRefGoogle Scholar
  34. RHS (2007) RHS colour charts, 5th edn. The Royal Horticultural Society, LondonGoogle Scholar
  35. Rizzo F (2013) LEADER policy practices and landscapes in the light of the agency-structure debate: evidence from LEADER local action groups in Italy and in Finland. Eur Ctrys 3:232–250Google Scholar
  36. Rodriguez M, Rau D, Papa R, Attene G (2008) Genotype by environment interactions in barley (Hordeum vulgare L.) different responses of landraces, recombinant inbred lines and varieties to Mediterranean environment. Euphytica 163:231–247CrossRefGoogle Scholar
  37. Royo C, Nazco R, Villega D (2014) The climate of the zone of origin of Mediterranean durum wheat (Triticum durum Desf.) landraces affects their agronomic performance. Genet Resour Crop Evol 61:1345–1358CrossRefGoogle Scholar
  38. Sachs L (1999) Angewandte Statistik. Springer, BerlinCrossRefGoogle Scholar
  39. Schilperoord P (2012) Beitrag zur Geschichte der Kulturpflanzen. 1. Getreide. Schweiz, Nord- und Südtirol. Accessed 12 Apr 2014
  40. Šidàk Z (1967) Rectangular confidence region for the means of multivariate normal distributions. J Am Stat Assoc 62:626–633Google Scholar
  41. Spike J, Piepho HP, Hu X (2005) Analysis of unbalanced data by mixed linear models using the MIXED procedure of the SAS system. J Agron Crop Sci 191:47–54CrossRefGoogle Scholar
  42. Tanto Hadado T, Rau D, Bitocchi E, Papa R (2010) Adaptation and diversity along an altitudinal gradient in Ethiopian barley (Hordeum vulgare L.) landraces revealed by molecular analysis. BMC Plant Biol 10(1):121Google Scholar
  43. Yadav OP, Weltzien RE, Bhandari DC (2001) Genetic variation and trait relationship in the pearl millet landraces from Rajahstan. Indian J Genet Plant Breed 61:322–326Google Scholar
  44. Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139CrossRefGoogle Scholar
  45. Zohary D, Hopf M (1993) Domestication of plants in the Old world. Clarendon Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • G. Peratoner
    • 1
  • S. Seling
    • 1
  • C. Klotz
    • 1
  • C. Florian
    • 1
  • U. Figl
    • 1
  • A. O. Schmitt
    • 2
  1. 1.Section Mountain AgricultureResearch Centre for Agriculture and Forestry LaimburgVadena, AuerItaly
  2. 2.Free University of Bozen-BolzanoBolzanoItaly

Personalised recommendations