Advertisement

Genetic Resources and Crop Evolution

, Volume 62, Issue 7, pp 1009–1019 | Cite as

Comparison among recognized and non-recognized Phaseolus vulgaris L. landraces as traditional agro-food products of the Campania region (Italy)

  • Angela R. Piergiovanni
  • Domenica Villecco
  • Lucia Lioi
  • Massimo Zaccardelli
Research Article
  • 203 Downloads

Abstract

Efforts to safeguard and promote the on-farm maintenance of common bean (Phaseolus vulgaris L.) landraces should take seed quality into high consideration. Seed quality, in addition to suitable agronomic performances, is a good criterion to identify the most interesting materials among those traditionally cultivated. Ten landraces, still cultivated in the Campania region (southern Italy), were investigated. Five of these landraces, recognized as regional traditional agro-food products, are included in the list of the Italian typical products. Landraces belonging to both Mesoamerican and Andean common bean gene pools were present in the ten studied materials. The harvests of two subsequent growing seasons were analysed in order to compare the physico-chemical, culinary and nutritional seed quality of, recognised or not, landraces. Eighteen agronomic and nutritional traits were scored. When individually considered, none of the scored traits was able to discriminate the two groups of landraces. Conversely, submitting all traits to cluster analysis, two sub-clusters corresponding to recognised or not traditional products were obtained. Two landraces, one for each group, remained isolated. On the bases of these results, it can be inferred that the landraces recognized as traditional agro-food products have different culinary and nutritional characteristics in respect to the non-recognized ones.

Keywords

Common bean Genetic resources Phaseolus vulgaris Quality marks Safeguard Seed composition 

Notes

Acknowledgments

The authors thank G. Campanella for supporting in seed processing before chemical analyses.

References

  1. Angioi SA, Rau D, Rodriguez M, Logozzo G, Desiderio F, Papa R, Attene G (2009) Nuclear and chloroplast microsatellite diversity in Phaseolus vulgaris L. from Sardinia (Italy). Mol Breed 23:413–429. doi: 10.1007/s11032-008-9245-8 CrossRefGoogle Scholar
  2. AOAC (1970) Official methods of analysis. Association of official agricultural chemists (11th ed) Washington, USAGoogle Scholar
  3. Blair MW, Herrera AL, Sandoval TA, Caldas GV, Fileppi M, Sparvoli F (2012) Inheritance of seed phytate and phosphorus levels in common bean (Phaseolus vulgaris L.) and association with newly-mapped candidate genes. Mol Breed 30:1265–1277. doi: 10.1007/s11032-012-9713-z CrossRefGoogle Scholar
  4. Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B9:165–191CrossRefGoogle Scholar
  5. Bollini R, Chrispeels MJ (1978) Characterisation and subcellular localisation of vicilin and phytohemagglutinin, the two major reserve proteins of Phaseolus vulgaris L. Planta 142:291–298CrossRefPubMedGoogle Scholar
  6. Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252:55–128CrossRefGoogle Scholar
  7. Campion B, Sparvoli F, Doria E, Tagliabue G, Galasso I, Fileppi M, Bollini R, Nielsen E (2009) Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:1211–1221. doi: 10.1007/s00122-009-0975-8 CrossRefPubMedGoogle Scholar
  8. Clemente A, MacKenzie DA, Jonson IT, Domoney C (2004) Investigation of legume seed protease inhibitors as potential anticarcinogenic proteins. In: Muzquiz M, Hill GD, Cuadrado C, Pedrosa MM, Burbano C (eds) Proceedings of the fourth international workshop on antinutritional factors in legume seeds and oilseeds. EAA Publications, Wageningen, pp 137–141Google Scholar
  9. Comes O (1910) Del fagiuolo comune: storia, filogenesi, qualità sospettata tossicità e sistemazione delle sue razze ovunque coltivate, vol LXI. Atti Istituto Incoraggiamento di Napoli, Napoli, pp 75–145Google Scholar
  10. Della Gatta C, Piergiovanni AR, Perrino P (1988) An improved method for the determination of trypsin inhibitor levels in legumes. Lebens-Wiss Technol 21:315–318Google Scholar
  11. Dorcinvil R, Sotomayor-Ramírez D, Beaver J (2010) Agronomic performance of common bean (Phaseolus vulgaris L.) lines in an oxisol. Field Crops Res 118:264–272. doi: 10.1016/j.fcr.2010.06.003 CrossRefGoogle Scholar
  12. Doria E, Campion B, Sparvoli F, Tava A, Nielson E (2012) Anti-nutrient components and metabolites with health implications in seeds of 10 common bean (Phaseolus vulgaris L. and Phaseolus lunatus L.) landraces cultivated in Italy. J Food Compos Anal 26:72–80. doi: 10.1016/j.jfca.2012.03.005 CrossRefGoogle Scholar
  13. ElMaki HB, Abdelrahaman M, Idris WH, Hassan AB, Babiker EE, El Tinay AH (2007) Content of antinutritional factors and HCl-extractability of minerals from white bean (Phaseolus vulgaris) varieties: influence of soaking and/or cooking. Food Chem 100:362–368. doi: 10.1016/j.foodchem.2005.09.060 CrossRefGoogle Scholar
  14. FAOSTAT (2012) FAO statistical database, Food and Agriculture Organization of the United Nations. http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E. Accessed 7 July 2014
  15. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–379Google Scholar
  16. Geil PB, Anderson JW (1994) Nutrition and health implications of dry beans: a review. J Am Coll Nutr 13:549–558CrossRefPubMedGoogle Scholar
  17. Gilani GS, Wu Xiao C, Cockell KA (2012) Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Brit J Nutr 108:S315–S332. doi: 10.1017/S0007114512002371 CrossRefGoogle Scholar
  18. Grases F, Isern B, Sanchis P, Perello J, Torres JJ, Costa-Bauza, A (2007) A phytate acts as inhibitor in formation of renal calculi. Front Biosci 12:2580–2587CrossRefPubMedGoogle Scholar
  19. Guillamon E, Pedrosa MM, Burbano C, Cuadrado C, de Cortes Sanchez M, Muzquiz M (2008) The trypsin inhibitors present in seed of different grain legume species and cultivar. Food Chem 107:68–74. doi: 10.1016/j.foodchem.2007.07.029 CrossRefGoogle Scholar
  20. IBPGR (1982) Descriptors for Phaseolus vulgaris. IBPGR, RomeGoogle Scholar
  21. Kaplan L, Lynch TF (1999) Phaseolus (Fabaceae) in archaeology: AMS radiocarbon dates and their significance for pre-colombian agriculture. Econ Bot 53:261–272CrossRefGoogle Scholar
  22. Lioi L (1991) Electrophoretic variation and geographical distribution of the seed protein phytohemagglutinin in cultivated Phaseolus vulgaris L. J Genet Breed 45:97–102Google Scholar
  23. Lioi L, Piergiovanni AR (2013) European common bean. In: Singh M, Upadhyaya HD, Bisht IS (eds) Genetic and genomic resources of grain legume improvement. Elsevier Inc, London, pp 11–40CrossRefGoogle Scholar
  24. Lioi L, Piergiovanni AR, Pignone D, Puglisi S, Santantonio M, Sonnante G (2005) Genetic diversity of some surviving on-farm Italian common bean (Phaseolus vulgaris L.) local varieties. Plant Breed 124:576–581. doi: 10.1111/j.1439-0523.2005.01153.x CrossRefGoogle Scholar
  25. Lioi L, Nuzzi A, Campion B, Piergiovanni AR (2012) Assessment of genetic variation in common bean (Phaseolus vulgaris L.) from Nebrodi mountains (Sicily, Italy). Genet Resour Crop Evol 59:455–464. doi: 10.1007/s10722-011-9696-3 CrossRefGoogle Scholar
  26. Lott JNA, Ockenden I, Raboy V, Batten GD (2000) Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Sci Res 10:11–33. doi: 10.1017/S0960258500000039 Google Scholar
  27. McGuire S (2011) Dietary guidelines for Americans 2010. Adv Nutr 2:293–294. doi: 10.3945/an.111.000430 PubMedCentralCrossRefPubMedGoogle Scholar
  28. Mercati F, Leone M, Lupini A, Sorgonà A, Bacchi M, Abenavoli MR, Sunseri F (2013) Genetic diversity and population structure of a common bean (Phaseolus vulgaris L.) collection from Calabria (Italy). Genet Resour Crop Evol 60:839–852. doi: 10.1007/s10722-012-9879-6 CrossRefGoogle Scholar
  29. Montoya CA, Lalles JP, Beebe S, Leterme P (2010) Phaseolin diversity as a possible strategy to improve the nutritional value of common bean (Phaseolus vulgaris). Food Res Int 43:443–449. doi: 10.1016/j.foodres.2009.09.040 CrossRefGoogle Scholar
  30. Negri V (2003) Landraces in central Italy: where and why they are conserved and perspective for their on-farm conservation. Genet Resour Crop Evol 50:871–885CrossRefGoogle Scholar
  31. Negri V, Tosti N (2002) Phaseolus genetic diversity maintained on-farm in central Italy. Genet Resour Crop Evol 49:511–520CrossRefGoogle Scholar
  32. Piergiovanni AR (2011) Kinetic of water adsorption in common bean: considerations on the suitability of peleg’s model for describing bean hydration. J Food Process Preserv 35:447–452. doi: 10.1111/j.1745-4549.2010.00486.x CrossRefGoogle Scholar
  33. Piergiovanni AR, Pignone D (2003) Effect of year-to-year variation and genotype on trypsin inhibitor level in common bean (Phaseolus vulgaris L) seeds. J Sci Food Agric 83:473–476. doi: 10.1002/jsfa.1404 CrossRefGoogle Scholar
  34. Piergiovanni AR, Lioi L (2010) Italian common bean landraces: history, genetic diversity and seed quality. Diversity 2:837–862. doi: 10.3390/d2060837 CrossRefGoogle Scholar
  35. Piergiovanni AR, Cerbino D, Brandi M (2000a) The common bean populations from Basilicata (Southern Italy). An evaluation of their variation. Genet Resour Crop Evol 47:489–495CrossRefGoogle Scholar
  36. Piergiovanni AR, Cerbino D, Della Gatta C (2000b) Diversity in seed quality traits of common bean (Phaseolus vulgaris L.) population from Basilicata (Southern Italy). Plant Breed 119:513–516CrossRefGoogle Scholar
  37. Piergiovanni AR, Taranto G, Losavio FP, Pignone D (2006) Common bean (Phaseolus vulgaris L.) landraces from Abruzzo and Lazio regions (Central Italy). Genet Resour Crop Evol 53:313–322. doi: 10.1007/s10722-004-6144-7 CrossRefGoogle Scholar
  38. Pilu R, Panzeri D, Gavazzi G, Rasmussen SK, Consonni G, Nielsen E (2003) Phenotypic, genetic and molecular characterisation of a maize low phytic acid mutant (Ipa 241). Theor Appl Genet 107:280–287. doi: 10.1007/s00122-003-1316-y CrossRefGoogle Scholar
  39. Raggi L, Tiranti B, Negri V (2013) Italian common bean landraces: diversity and population structure. Genet Resour Crop Evol 60:1515–1530. doi: 10.1007/s10722-012-9939-y CrossRefGoogle Scholar
  40. Santalla M, De Ron AM, Voysest O (2001) European bean market classes. In: Amurrio M, Santalla M, De Ron AM (eds) Catalogue of bean genetic resources, PHASELIEU-FAIR5-PL97—3463 and Misión Biológica de Galicia (CSIC). Pontevedra, Spain, pp 79–94Google Scholar
  41. Sicard D, Nanni L, Porfiri O, Bulfon D, Papa R (2005) Genetic diversity of Phaseolus vulgaris L. and Phaseolus coccineus L. landraces in central Italy. Plant Breed 124:464–472. doi: 10.1111/j.1439-0523.2005.01137.x CrossRefGoogle Scholar
  42. Stodolak B, Starzynska-Janiszewska A (2008) The influence of tempeh fermentation and conventional cooking on anti-nutrient level and protein bioavailability (in vitro test) of grass pea seeds. J Sci Food Agric 88:2265–2270. doi: 10.1002/jsfa.3341 CrossRefGoogle Scholar
  43. Walker AF, Kochhar N (1982) Effect of processing including domestic cooking on nutritional quality of legumes. P Nutr Soc 41:41–51CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Angela R. Piergiovanni
    • 1
  • Domenica Villecco
    • 2
  • Lucia Lioi
    • 1
  • Massimo Zaccardelli
    • 2
  1. 1.Istituto di Bioscienze e BiorisorseCNRBariItaly
  2. 2.Centro di Ricerca per l’ OrticolturaCRAPontecagnanoItaly

Personalised recommendations