Genetic Resources and Crop Evolution

, Volume 62, Issue 5, pp 665–689 | Cite as

A domestication assessment of the big five plant families

  • Karl Hammer
  • Korous Khoshbakht
Research Article


To assess domestication levels in the five big families of higher plants (Compositae, Leguminosae, Orchidaceae, Rubiaceae, Gramineae) we propose an index that categorizes taxa according to the strength of domestication. The selection of species followed the Mansfeld approach, i.e. all plants cultivated by man with the exception of ornamentals have been included. The basis for our studies was Mansfeld’s Encyclopedia (Hanelt and IPK in Mansfeld’s encyclopedia of agricultural and horticultural crops, vol 1. Springer, Berlin, p 6, 2001). Information about additional cultivated species has been collected in the past years. Altogether 2,166 cultivated species have been analyzed—1.013 Leguminosae (5.2 %), 735 Gramineae (7.6 %), 293 Compositae (1.2 %), 84 Rubiaceae (0.7 %) and 41 Orchidaceae (0.2 %) (in brackets the percentages of cultivated species within the respective families). The domestication assessment confirmed the importance for man of the families with relative high numbers of highly domesticated (H), domesticated (D) and semi-domesticated (S) species for Gramineae and Leguminosae, followed by Compositae, and relative low levels for Rubiaceae and Orchidaceae. The assessment data of Compositae, Leguminosae and Gramineae are mainly shown for H (because of the great number of species), for Rubiaceae and Orchidaceae they are provided in total, including all assessment categories. Selected species from the different families are discussed within their commodity groups. The reasons for the differences between the families are analyzed. Factors causing high levels of domestication assessment are high species diversity, global geographic distribution, good seed storability, good seed quality characters (starch and oil) and the earlier co-evolution of plants and animals (rodents) towards seed/fruit sizes and qualities. Leguminosae can make use of the nitrogen from the air with the help of Rhizobium bacteria. Gramineae can effectively use the available nitrogen. This has led to combined suitabilities for domestication and agricultural developments. The paucity of domesticated species is dependent on high specialisation, a high level of secondary defense compounds and the lack of carbohydrates digestible for man. Diverse cultural and genetic factors can have positive or negative effects on use preferences by man.


Compositae Domestication Gramineae Leguminosae Orchidaceae Rubiaceae Trait analysis 


  1. Abraham Z, Senthilkumar R, Joseph John K, Sharma TVRS, Nair NV, Unnikrishnan M, Kumaran PM, George JG, Uma S, Latha M, Malik SS, Mishra SK, Bhandari DC, Pareek SK (2008) Collection of plant genetic resources from Andaman and Nicobar Islands. Genet Resour Crop Evol 55:1279–1289CrossRefGoogle Scholar
  2. Anderberg A, Baldwin C, Bayer RG (2007) Compositae. In: Kubitzki K, Kadereit JW, Jeffrey C (eds) The families and genera of vascular plants, vol 8. Flowering plants, eudicots, asterales. Springer, Berlin, pp 61–588Google Scholar
  3. Blumenthal M (1998) The complete German Commission E monographs. American Botanical Council, AustinGoogle Scholar
  4. Bray F (1995) Modelle für die Landwirtschaft: Misch- kontra Monokultur. Spektrum der Landwirtschaft 4:74–80Google Scholar
  5. Brown AHD (2010) Variation under domestication in plants: 1859 and today. Philos Trans R Soc Lond B Biol Sci 365:2523–2530PubMedCentralPubMedCrossRefGoogle Scholar
  6. Burke JM, Tang S, Klatt S et al (2002) Genetic analysis of sunflower domestication. Genetics 161:1257–1267PubMedCentralPubMedGoogle Scholar
  7. Bye RA (1981) Quelites—ethnoecology of edible greens—past, present, and future. J Ethnobiol 1:109–123Google Scholar
  8. Caligari PDS, Hind DJN (eds) (1996) Compositae: biology and utilization. Royal Botanic Gardens, KewGoogle Scholar
  9. Childe VG (1925) The dawn of European civilization. New YorkGoogle Scholar
  10. Clayton WD, Renvoize SA (1989) Genera graminum. Grasses of the world. In: Kew bulletin additional series, 13, KewGoogle Scholar
  11. Cullen J, Knees SG, Cubey HS (eds) (2011) The European garden flora, vol 5, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  12. Daniel M (2006) Medicinal plants: chemistry and properties. Science Publishers, EnfieldCrossRefGoogle Scholar
  13. Dansi A, Adjatin A, Adoukonou-Sagbadja H, Faladé V, Yedumonhan H, Odou D, Dossou B (2008) Traditional leafy vegetables and their use in the Benin Republic. Genet Resour Crop Evol 55:1239–1256CrossRefGoogle Scholar
  14. Darke R, Griffiths M (1994) Manual of grasses. MacMillan, London and BasingstokeGoogle Scholar
  15. Davis A, Stoffelen P (2006) An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Bot J Linn Soc 152:462–512Google Scholar
  16. Dempewolf H, Rieseberg LH, Cronk QC (2008) Crop domestication in the Compositae: a family-wide trait assessment. Genet Resour Crop Evol 55:1141–1157CrossRefGoogle Scholar
  17. Dempewolf H, Bordoni L, Rieseberg LH, Johannes E (2010a) Food security: crop species diversity. Science 328:169–170PubMedCrossRefGoogle Scholar
  18. Dempewolf H, Kane NC, Ostervik KL, Geleta M, Stewart ML, Lai Z, Bekele E, Cronk QC, Rieseberg LH (2010b) Establishing genomic tools and resources for Guizotia abyssinica (L.f.) Cass.—the development of a library of expressed sequence tags, microsatellite loci and the sequencing of its chloroplast genome. Mol Ecol Resour 10:1048–1058PubMedCrossRefGoogle Scholar
  19. Denison RF (2012) Darwinian agriculture: how understanding evolution can improve agriculture. Princeton University Press, PrincetonGoogle Scholar
  20. Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910PubMedCentralPubMedCrossRefGoogle Scholar
  21. Etkin N (2006) Edible medicines: an ethnopharmacology of food. University Arizona Press, TucsonGoogle Scholar
  22. Feyissa T, Nybom H, Bartish IC, Welander M (2007) Analysis of genetic diversity in the endangered tropical tree species Hagenia abyssinica using ISSR markers. Genet Resour Crop Evol 54:947–958CrossRefGoogle Scholar
  23. Förster K (1957) Einzug der Gräser und Farne in die Gärten. Neumann, NeudammGoogle Scholar
  24. Foster S, Johnson RI (2006) Desk reference to nature’s medicine. National Geographic, WashingtonGoogle Scholar
  25. Fuller DQ (2007) Contrasting patterns of crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann Bot 100:903–924PubMedCentralPubMedCrossRefGoogle Scholar
  26. Gebauer J, Luedeling E, Hammer K, Nagieb M, Buerkert A (2007) Mountain oases in northern Oman: an environment for evolution and in situ conservation of plant genetic resources. Genet Resour Crop Evol 54:465–481CrossRefGoogle Scholar
  27. Gepts P (2004) Crop domestication as a long-term selection experiment. Plant Breed Rev 24:1–44Google Scholar
  28. Gladis T, Pistrick K (2011) Chaerophyllum byzantinum Boiss. and Trachystemon orientalis (L.) G. Don—recently introduced from Turkish wild flora as new crop species among other interesting findings from immigrant gardens in western Germany. Genet Resour Crop Evol 58:165–174CrossRefGoogle Scholar
  29. Glen HF (2002) Cultivated plants of southern Africa—names, common names, literature. Jacana, JohannesburgGoogle Scholar
  30. Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877PubMedCentralPubMedCrossRefGoogle Scholar
  31. Grimshaw J, Bayton R (2009) New trees. Recent introductions to cultivation. Royal Botanic Gardens, KewGoogle Scholar
  32. Hammer K (1988) Preadaptation and domestication of crops and weeds. Biol Zent 107(6):631–636Google Scholar
  33. Hammer K (1991) Checklists and germplasm collecting. FAO/IBPGR Plant Genet Resour Newsl 85:15–17Google Scholar
  34. Hammer K (1999) Paradigmenwechsel im Bereich der pflanzengenetischen Ressourcen. Vortr Pflanzenzüchtg 46:345–355Google Scholar
  35. Hammer K (2003) Resolving the challenge posed by agrobiodiversity and plant genetic resources—an attempt. JARTS Beih. 76:1–184. Kassel University PressGoogle Scholar
  36. Hammer K, Khoshbakht K (in prep.) The Big Five. A domestication assessment. TehranGoogle Scholar
  37. Hammer K, Laghetti G (2006) Small agricultural islands and plant genetic resources—Le piccole isole rurali italiane. BariGoogle Scholar
  38. Hammer K, Teklu Y (2008) Plant genetic resources: selected issues from genetic erosion to genetic engineering. J Agric Rural Dev Trop Subtrop 109:15–50Google Scholar
  39. Hammer K, Heller J, Engels J (2001) Monographs on underutilized and neglected crops. Genet Resour Crop Evol 48:3–5CrossRefGoogle Scholar
  40. Hammer K, Gebauer J, Al Khanjari S, Buerkert A (2009) Oman at the crossroads of inter-regional exchange of cultivated plants. Genet Resour Crop Evol 56:547–560CrossRefGoogle Scholar
  41. Hanelt P, IPK (eds) (2001) Mansfeld’s encyclopedia of agricultural and horticultural crops, vol 1. Springer, Berlin, p 6Google Scholar
  42. Harlan JR (1967) A wild wheat harvest in Turkey. Archaeology 20:197–201Google Scholar
  43. Hermann M, Heller J (eds) (1997) Andean roots and tubers: ahipa, arracacha, maca and yacon. IPGGRI, IPK, Rome, GaterslebenGoogle Scholar
  44. Heywood VH, Brummitt RK, Culham H, Seberg O (2007) Flowering plant families of the world. Royal Botanical Gardens, KewGoogle Scholar
  45. Hobhouse H (1999) Seeds of change: six plants that transformed mankind. Macmillan, LondonGoogle Scholar
  46. Isaacs J (1997) Bush food: aboriginal food and herbal medicine. The Rocks, New South WalesGoogle Scholar
  47. Jansen PCM, Cardon D (eds) (2005) Plant resources of tropical Africa 3. Dyes and tannins, WageningenGoogle Scholar
  48. Keller J (2001) Orchidaceae. In: Hanelt P, IPK (eds), Mansfeld’s encyclopedia of agricultural and horticultural crops, vol 5. Springer, Berlin, pp 2303–2316Google Scholar
  49. Kellogg EA (2000) The grasses: a case study in macroevolution. Ann Rev Ecol Syst 31:217–238CrossRefGoogle Scholar
  50. Khoshbakht K, Hammer K (2008a) How many plant species are cultivated? Genet Resour Crop Evol 55:925–928CrossRefGoogle Scholar
  51. Khoshbakht K, Hammer K (2008b) Species richness in relation to the presence of crop plants in families of higher plants. JARTS 109:181–190Google Scholar
  52. Khoshbakht K, Hammer K (2010) Threatened crop species diversity. Shahid Beheshti University Press, TehranGoogle Scholar
  53. Kirschner J, Štepánek J, Černý T, de Heer P, van Dijk PJ (2013) Available ex situ germplasm of the potential rubber crop Taraxacum koksaghyz belongs to a poor rubber producer, T. brevicorniculatum (Compositae-Crepidinae). Genet Resour Crop Evol 60:455–471CrossRefGoogle Scholar
  54. Kubitzki K (ed) (2007) Flowering plants. Eudicots. The families and genera of vascular plants, vol 9. Springer, BerlinGoogle Scholar
  55. Ladizinsky G (1987) Pulse domestication before cultivation. Econ Bot 41:60–65CrossRefGoogle Scholar
  56. Laghetti G (2009) Microevolution of Scolymus hispanicus L. (Compositae) in south Italy: from gathering of wild plants to some attempts of cultivation. In: Buerkert A, Gebauer J (eds) Agrobiodiversity and genetic erosion, contributions in honor of Prof. Dr. Karl Hammer. Supplement no. 92 to the Journal of Agriculture and Rural Development in the Tropics and Subtropics, Kassel University Press GmbH, pp 119–126Google Scholar
  57. Lawler LJ (1984) Ethnobotany of the Orchidaceae. In: Arditti J (ed) Orchid biology: reviews and perspectives, vol 3. Comstock Publishing Associates, Ithaca, pp 27–194Google Scholar
  58. Laws B (2010) Fifty plants that changed the course of history. Quid PublishersGoogle Scholar
  59. Lemmens RHJM, Bunyapraphatsara N (eds) (2003) Plant resources of South-East Asia 12, medicinal and poisonous plants, vol 3. Leiden, The NetherlandsGoogle Scholar
  60. Lev-Yafun S, Abbo S (1999) Traditional use of A’kub (Gundelia tournefortii, Asteraceae), in Israel and the Palestinian authority area. Econ Bot 53:217–223CrossRefGoogle Scholar
  61. Lewis G, Schrire B, Mackinder B, Lock M (eds) (2005) Legumes of the world. The Royal Botanic Gardens, KewGoogle Scholar
  62. Li Ch-Y, Zang G-Y, Hammer K, Yang Ch-Y, Long Ch-L (2011) A checklist of the cultivated plants of Yunnan (PR China). Genet Resour Crop Evol 58:153–164 + electronic appendixGoogle Scholar
  63. Linder HP, Rudall PJ (2005) Evolutionary history of Poales. Ann Rev Ecol Syst 36:107–124CrossRefGoogle Scholar
  64. Lips E (1956) Die Reisernte der Ojibwa-Indianer. Wirtschaft und Recht eines Erntevolkes. Akademie-Verlag, BerlinGoogle Scholar
  65. Logan HH, Dixon AR (1994) Agriculture and the acquisition of medicinal plant knowledge. In: Etkin NL (ed) Eating on the wild side. University Arizona Press, Tucson, pp 25–45Google Scholar
  66. Mabberley DJ (2008) Mabberley’s plant book, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  67. Marshall E (2001) Agriculture and use of wild and weedy greens by the PiiK ap Oom Okiek of Kenya. Econ Bot 55:32–46CrossRefGoogle Scholar
  68. Maurizio A (1927) Die Geschichte unserer Pflanzennahrung. Paul Parey, BerlinGoogle Scholar
  69. Moreno-Black G et al (1996) Non-domesticated food resources in the marketplace and marketing system of Northeastern Thailand. J Ethnobiol 16:99–117Google Scholar
  70. Natho G (2001) Rubiaceae. In: Hanelt P, IPK (eds), Mansfeld’s encyclopedia. Springer, Berlin, pp 1764–1789Google Scholar
  71. Nayar NM (2011) Agrobiodiversity in a biodiversity hotspot: Kerala State, India. Its origin and status. Genet Resour Crop Evol 58:55–82CrossRefGoogle Scholar
  72. Pandey A, Nayar ER, Venkateswaran K, Bhandari BC (2008) Genetic resources of Prunus (Rosaceae) in India. Genet Resour Crop Evol 55:91–104CrossRefGoogle Scholar
  73. Pickersgill B (2009) Domestication of plants revisited—Darwin to the present day. Bot J Linn Soc 161:203–212CrossRefGoogle Scholar
  74. Pickersgill B, Lock JM (eds) (1996) Advances in legume systematics 8. Legumes of economic importance. Royal Botanic Gardens, KewGoogle Scholar
  75. Pistrick K (2003) Mansfeld’s encyclopedia of agricultural and horticultural crops and the Mansfeld phenomenon. Schr Genet Resour 22:21–31Google Scholar
  76. Prendergast M (1999) Uncommon grounds. In: The history of coffee and how it transformed our world. Basic Books, New YorkGoogle Scholar
  77. Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:843–848PubMedCrossRefGoogle Scholar
  78. Ram G, Bhan MK, Ahuja A, Meena SR, Kaul MK, Gupta KK, Jolly RL, Khajuria RK (2007) Variability and selection on different Argyrolobium roseum accessions for morphological traits and yield. Genet Resour Crop Evol 54:649–654CrossRefGoogle Scholar
  79. Roberts JA, Beale CR, Bensler JC, McGough HN, Zappl DC (1995–2002) CITES orchid checklist I–III. Richmond, Royal Botanic Gardens, KewGoogle Scholar
  80. Simpson BB (2009) Economic importance of Compositae. In: Funk VA, Susanna A, Stuessy TF, Bayer RJ (eds) Systematics, evolution and biogeography of Compositae. IAPT, Vienna, pp 45–58Google Scholar
  81. Sprent JI, McKey D (eds) (1994) Advances in legume systematics 5. The nitrogen factor. Royal Botanic Gardens, KewGoogle Scholar
  82. Stebbins GL (1981) Coevolution of grasses and herbivores. Ann Mo Bot Gard 68:75–86CrossRefGoogle Scholar
  83. Tilman D (1999) Global environmental impacts of agricultural expansion. The need for sustainable and efficient practices. PNAS USA 96:5995–6000PubMedCentralPubMedCrossRefGoogle Scholar
  84. van Beilen JB, Poirier Y (2007) Establishment of new crops for the production of natural rubber. Trends Biotechnol 25:522–529PubMedCrossRefGoogle Scholar
  85. Vaughan DA, Balázs E, Heslop-Harrison JS (2007) From domestication to super-domestication. Ann Bot 100:893–901PubMedCentralPubMedCrossRefGoogle Scholar
  86. Westphal E, Jansen PCM (eds) (1989) Plant resources of South-East Asia. A selection. Pudoc, WageningenGoogle Scholar
  87. Zeder MA, Emshwiller E, Smith BD, Bradley DG (2006) Documenting domestication. In: Zeder MA, Emshwiller E, Smith BD, Bradley DG (eds) A critical examination of markers of initial domestication in goats (Capra hircus). University of California Press, Berkeley, pp 181–208Google Scholar
  88. Zeven AC, de Wet JMJ (1982) Dictionary of cultivated plants and their regions of diversity. WageningenGoogle Scholar
  89. Zohary D (1999) Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. Genet Resour Crop Evol 46:133–142CrossRefGoogle Scholar
  90. Zohary D (2004) Unconscious selection and the evolution of domesticated plants. Econ Bot 58:5–10CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute of Crop ScienceUniversity of KasselWitzenhausenGermany
  2. 2.Environmental Science Research InstituteShahid Beheshti University, G.C.TehranIran

Personalised recommendations