Skip to main content
Log in

A domestication assessment of the big five plant families

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

To assess domestication levels in the five big families of higher plants (Compositae, Leguminosae, Orchidaceae, Rubiaceae, Gramineae) we propose an index that categorizes taxa according to the strength of domestication. The selection of species followed the Mansfeld approach, i.e. all plants cultivated by man with the exception of ornamentals have been included. The basis for our studies was Mansfeld’s Encyclopedia (Hanelt and IPK in Mansfeld’s encyclopedia of agricultural and horticultural crops, vol 1. Springer, Berlin, p 6, 2001). Information about additional cultivated species has been collected in the past years. Altogether 2,166 cultivated species have been analyzed—1.013 Leguminosae (5.2 %), 735 Gramineae (7.6 %), 293 Compositae (1.2 %), 84 Rubiaceae (0.7 %) and 41 Orchidaceae (0.2 %) (in brackets the percentages of cultivated species within the respective families). The domestication assessment confirmed the importance for man of the families with relative high numbers of highly domesticated (H), domesticated (D) and semi-domesticated (S) species for Gramineae and Leguminosae, followed by Compositae, and relative low levels for Rubiaceae and Orchidaceae. The assessment data of Compositae, Leguminosae and Gramineae are mainly shown for H (because of the great number of species), for Rubiaceae and Orchidaceae they are provided in total, including all assessment categories. Selected species from the different families are discussed within their commodity groups. The reasons for the differences between the families are analyzed. Factors causing high levels of domestication assessment are high species diversity, global geographic distribution, good seed storability, good seed quality characters (starch and oil) and the earlier co-evolution of plants and animals (rodents) towards seed/fruit sizes and qualities. Leguminosae can make use of the nitrogen from the air with the help of Rhizobium bacteria. Gramineae can effectively use the available nitrogen. This has led to combined suitabilities for domestication and agricultural developments. The paucity of domesticated species is dependent on high specialisation, a high level of secondary defense compounds and the lack of carbohydrates digestible for man. Diverse cultural and genetic factors can have positive or negative effects on use preferences by man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham Z, Senthilkumar R, Joseph John K, Sharma TVRS, Nair NV, Unnikrishnan M, Kumaran PM, George JG, Uma S, Latha M, Malik SS, Mishra SK, Bhandari DC, Pareek SK (2008) Collection of plant genetic resources from Andaman and Nicobar Islands. Genet Resour Crop Evol 55:1279–1289

    Article  Google Scholar 

  • Anderberg A, Baldwin C, Bayer RG (2007) Compositae. In: Kubitzki K, Kadereit JW, Jeffrey C (eds) The families and genera of vascular plants, vol 8. Flowering plants, eudicots, asterales. Springer, Berlin, pp 61–588

    Google Scholar 

  • Blumenthal M (1998) The complete German Commission E monographs. American Botanical Council, Austin

    Google Scholar 

  • Bray F (1995) Modelle für die Landwirtschaft: Misch- kontra Monokultur. Spektrum der Landwirtschaft 4:74–80

    Google Scholar 

  • Brown AHD (2010) Variation under domestication in plants: 1859 and today. Philos Trans R Soc Lond B Biol Sci 365:2523–2530

    Article  PubMed Central  PubMed  Google Scholar 

  • Burke JM, Tang S, Klatt S et al (2002) Genetic analysis of sunflower domestication. Genetics 161:1257–1267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bye RA (1981) Quelites—ethnoecology of edible greens—past, present, and future. J Ethnobiol 1:109–123

    Google Scholar 

  • Caligari PDS, Hind DJN (eds) (1996) Compositae: biology and utilization. Royal Botanic Gardens, Kew

    Google Scholar 

  • Childe VG (1925) The dawn of European civilization. New York

  • Clayton WD, Renvoize SA (1989) Genera graminum. Grasses of the world. In: Kew bulletin additional series, 13, Kew

  • Cullen J, Knees SG, Cubey HS (eds) (2011) The European garden flora, vol 5, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Daniel M (2006) Medicinal plants: chemistry and properties. Science Publishers, Enfield

    Book  Google Scholar 

  • Dansi A, Adjatin A, Adoukonou-Sagbadja H, Faladé V, Yedumonhan H, Odou D, Dossou B (2008) Traditional leafy vegetables and their use in the Benin Republic. Genet Resour Crop Evol 55:1239–1256

    Article  Google Scholar 

  • Darke R, Griffiths M (1994) Manual of grasses. MacMillan, London and Basingstoke

    Google Scholar 

  • Davis A, Stoffelen P (2006) An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Bot J Linn Soc 152:462–512

    Google Scholar 

  • Dempewolf H, Rieseberg LH, Cronk QC (2008) Crop domestication in the Compositae: a family-wide trait assessment. Genet Resour Crop Evol 55:1141–1157

    Article  Google Scholar 

  • Dempewolf H, Bordoni L, Rieseberg LH, Johannes E (2010a) Food security: crop species diversity. Science 328:169–170

    Article  CAS  PubMed  Google Scholar 

  • Dempewolf H, Kane NC, Ostervik KL, Geleta M, Stewart ML, Lai Z, Bekele E, Cronk QC, Rieseberg LH (2010b) Establishing genomic tools and resources for Guizotia abyssinica (L.f.) Cass.—the development of a library of expressed sequence tags, microsatellite loci and the sequencing of its chloroplast genome. Mol Ecol Resour 10:1048–1058

    Article  CAS  PubMed  Google Scholar 

  • Denison RF (2012) Darwinian agriculture: how understanding evolution can improve agriculture. Princeton University Press, Princeton

    Google Scholar 

  • Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Etkin N (2006) Edible medicines: an ethnopharmacology of food. University Arizona Press, Tucson

    Google Scholar 

  • Feyissa T, Nybom H, Bartish IC, Welander M (2007) Analysis of genetic diversity in the endangered tropical tree species Hagenia abyssinica using ISSR markers. Genet Resour Crop Evol 54:947–958

    Article  Google Scholar 

  • Förster K (1957) Einzug der Gräser und Farne in die Gärten. Neumann, Neudamm

    Google Scholar 

  • Foster S, Johnson RI (2006) Desk reference to nature’s medicine. National Geographic, Washington

    Google Scholar 

  • Fuller DQ (2007) Contrasting patterns of crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann Bot 100:903–924

    Article  PubMed Central  PubMed  Google Scholar 

  • Gebauer J, Luedeling E, Hammer K, Nagieb M, Buerkert A (2007) Mountain oases in northern Oman: an environment for evolution and in situ conservation of plant genetic resources. Genet Resour Crop Evol 54:465–481

    Article  Google Scholar 

  • Gepts P (2004) Crop domestication as a long-term selection experiment. Plant Breed Rev 24:1–44

    Google Scholar 

  • Gladis T, Pistrick K (2011) Chaerophyllum byzantinum Boiss. and Trachystemon orientalis (L.) G. Don—recently introduced from Turkish wild flora as new crop species among other interesting findings from immigrant gardens in western Germany. Genet Resour Crop Evol 58:165–174

    Article  Google Scholar 

  • Glen HF (2002) Cultivated plants of southern Africa—names, common names, literature. Jacana, Johannesburg

    Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grimshaw J, Bayton R (2009) New trees. Recent introductions to cultivation. Royal Botanic Gardens, Kew

    Google Scholar 

  • Hammer K (1988) Preadaptation and domestication of crops and weeds. Biol Zent 107(6):631–636

    Google Scholar 

  • Hammer K (1991) Checklists and germplasm collecting. FAO/IBPGR Plant Genet Resour Newsl 85:15–17

    Google Scholar 

  • Hammer K (1999) Paradigmenwechsel im Bereich der pflanzengenetischen Ressourcen. Vortr Pflanzenzüchtg 46:345–355

    Google Scholar 

  • Hammer K (2003) Resolving the challenge posed by agrobiodiversity and plant genetic resources—an attempt. JARTS Beih. 76:1–184. Kassel University Press

  • Hammer K, Khoshbakht K (in prep.) The Big Five. A domestication assessment. Tehran

  • Hammer K, Laghetti G (2006) Small agricultural islands and plant genetic resources—Le piccole isole rurali italiane. Bari

  • Hammer K, Teklu Y (2008) Plant genetic resources: selected issues from genetic erosion to genetic engineering. J Agric Rural Dev Trop Subtrop 109:15–50

    Google Scholar 

  • Hammer K, Heller J, Engels J (2001) Monographs on underutilized and neglected crops. Genet Resour Crop Evol 48:3–5

    Article  Google Scholar 

  • Hammer K, Gebauer J, Al Khanjari S, Buerkert A (2009) Oman at the crossroads of inter-regional exchange of cultivated plants. Genet Resour Crop Evol 56:547–560

    Article  Google Scholar 

  • Hanelt P, IPK (eds) (2001) Mansfeld’s encyclopedia of agricultural and horticultural crops, vol 1. Springer, Berlin, p 6

  • Harlan JR (1967) A wild wheat harvest in Turkey. Archaeology 20:197–201

    Google Scholar 

  • Hermann M, Heller J (eds) (1997) Andean roots and tubers: ahipa, arracacha, maca and yacon. IPGGRI, IPK, Rome, Gatersleben

  • Heywood VH, Brummitt RK, Culham H, Seberg O (2007) Flowering plant families of the world. Royal Botanical Gardens, Kew

    Google Scholar 

  • Hobhouse H (1999) Seeds of change: six plants that transformed mankind. Macmillan, London

    Google Scholar 

  • Isaacs J (1997) Bush food: aboriginal food and herbal medicine. The Rocks, New South Wales

    Google Scholar 

  • Jansen PCM, Cardon D (eds) (2005) Plant resources of tropical Africa 3. Dyes and tannins, Wageningen

    Google Scholar 

  • Keller J (2001) Orchidaceae. In: Hanelt P, IPK (eds), Mansfeld’s encyclopedia of agricultural and horticultural crops, vol 5. Springer, Berlin, pp 2303–2316

  • Kellogg EA (2000) The grasses: a case study in macroevolution. Ann Rev Ecol Syst 31:217–238

    Article  Google Scholar 

  • Khoshbakht K, Hammer K (2008a) How many plant species are cultivated? Genet Resour Crop Evol 55:925–928

    Article  Google Scholar 

  • Khoshbakht K, Hammer K (2008b) Species richness in relation to the presence of crop plants in families of higher plants. JARTS 109:181–190

    Google Scholar 

  • Khoshbakht K, Hammer K (2010) Threatened crop species diversity. Shahid Beheshti University Press, Tehran

    Google Scholar 

  • Kirschner J, Štepánek J, Černý T, de Heer P, van Dijk PJ (2013) Available ex situ germplasm of the potential rubber crop Taraxacum koksaghyz belongs to a poor rubber producer, T. brevicorniculatum (Compositae-Crepidinae). Genet Resour Crop Evol 60:455–471

    Article  Google Scholar 

  • Kubitzki K (ed) (2007) Flowering plants. Eudicots. The families and genera of vascular plants, vol 9. Springer, Berlin

  • Ladizinsky G (1987) Pulse domestication before cultivation. Econ Bot 41:60–65

    Article  Google Scholar 

  • Laghetti G (2009) Microevolution of Scolymus hispanicus L. (Compositae) in south Italy: from gathering of wild plants to some attempts of cultivation. In: Buerkert A, Gebauer J (eds) Agrobiodiversity and genetic erosion, contributions in honor of Prof. Dr. Karl Hammer. Supplement no. 92 to the Journal of Agriculture and Rural Development in the Tropics and Subtropics, Kassel University Press GmbH, pp 119–126

  • Lawler LJ (1984) Ethnobotany of the Orchidaceae. In: Arditti J (ed) Orchid biology: reviews and perspectives, vol 3. Comstock Publishing Associates, Ithaca, pp 27–194

    Google Scholar 

  • Laws B (2010) Fifty plants that changed the course of history. Quid Publishers

  • Lemmens RHJM, Bunyapraphatsara N (eds) (2003) Plant resources of South-East Asia 12, medicinal and poisonous plants, vol 3. Leiden, The Netherlands

  • Lev-Yafun S, Abbo S (1999) Traditional use of A’kub (Gundelia tournefortii, Asteraceae), in Israel and the Palestinian authority area. Econ Bot 53:217–223

    Article  Google Scholar 

  • Lewis G, Schrire B, Mackinder B, Lock M (eds) (2005) Legumes of the world. The Royal Botanic Gardens, Kew

    Google Scholar 

  • Li Ch-Y, Zang G-Y, Hammer K, Yang Ch-Y, Long Ch-L (2011) A checklist of the cultivated plants of Yunnan (PR China). Genet Resour Crop Evol 58:153–164 + electronic appendix

  • Linder HP, Rudall PJ (2005) Evolutionary history of Poales. Ann Rev Ecol Syst 36:107–124

    Article  Google Scholar 

  • Lips E (1956) Die Reisernte der Ojibwa-Indianer. Wirtschaft und Recht eines Erntevolkes. Akademie-Verlag, Berlin

    Google Scholar 

  • Logan HH, Dixon AR (1994) Agriculture and the acquisition of medicinal plant knowledge. In: Etkin NL (ed) Eating on the wild side. University Arizona Press, Tucson, pp 25–45

    Google Scholar 

  • Mabberley DJ (2008) Mabberley’s plant book, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Marshall E (2001) Agriculture and use of wild and weedy greens by the PiiK ap Oom Okiek of Kenya. Econ Bot 55:32–46

    Article  Google Scholar 

  • Maurizio A (1927) Die Geschichte unserer Pflanzennahrung. Paul Parey, Berlin

    Google Scholar 

  • Moreno-Black G et al (1996) Non-domesticated food resources in the marketplace and marketing system of Northeastern Thailand. J Ethnobiol 16:99–117

    Google Scholar 

  • Natho G (2001) Rubiaceae. In: Hanelt P, IPK (eds), Mansfeld’s encyclopedia. Springer, Berlin, pp 1764–1789

  • Nayar NM (2011) Agrobiodiversity in a biodiversity hotspot: Kerala State, India. Its origin and status. Genet Resour Crop Evol 58:55–82

    Article  Google Scholar 

  • Pandey A, Nayar ER, Venkateswaran K, Bhandari BC (2008) Genetic resources of Prunus (Rosaceae) in India. Genet Resour Crop Evol 55:91–104

    Article  Google Scholar 

  • Pickersgill B (2009) Domestication of plants revisited—Darwin to the present day. Bot J Linn Soc 161:203–212

    Article  Google Scholar 

  • Pickersgill B, Lock JM (eds) (1996) Advances in legume systematics 8. Legumes of economic importance. Royal Botanic Gardens, Kew

    Google Scholar 

  • Pistrick K (2003) Mansfeld’s encyclopedia of agricultural and horticultural crops and the Mansfeld phenomenon. Schr Genet Resour 22:21–31

    Google Scholar 

  • Prendergast M (1999) Uncommon grounds. In: The history of coffee and how it transformed our world. Basic Books, New York

  • Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:843–848

    Article  CAS  PubMed  Google Scholar 

  • Ram G, Bhan MK, Ahuja A, Meena SR, Kaul MK, Gupta KK, Jolly RL, Khajuria RK (2007) Variability and selection on different Argyrolobium roseum accessions for morphological traits and yield. Genet Resour Crop Evol 54:649–654

    Article  Google Scholar 

  • Roberts JA, Beale CR, Bensler JC, McGough HN, Zappl DC (1995–2002) CITES orchid checklist I–III. Richmond, Royal Botanic Gardens, Kew

  • Simpson BB (2009) Economic importance of Compositae. In: Funk VA, Susanna A, Stuessy TF, Bayer RJ (eds) Systematics, evolution and biogeography of Compositae. IAPT, Vienna, pp 45–58

    Google Scholar 

  • Sprent JI, McKey D (eds) (1994) Advances in legume systematics 5. The nitrogen factor. Royal Botanic Gardens, Kew

    Google Scholar 

  • Stebbins GL (1981) Coevolution of grasses and herbivores. Ann Mo Bot Gard 68:75–86

    Article  Google Scholar 

  • Tilman D (1999) Global environmental impacts of agricultural expansion. The need for sustainable and efficient practices. PNAS USA 96:5995–6000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Beilen JB, Poirier Y (2007) Establishment of new crops for the production of natural rubber. Trends Biotechnol 25:522–529

    Article  PubMed  Google Scholar 

  • Vaughan DA, Balázs E, Heslop-Harrison JS (2007) From domestication to super-domestication. Ann Bot 100:893–901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Westphal E, Jansen PCM (eds) (1989) Plant resources of South-East Asia. A selection. Pudoc, Wageningen

    Google Scholar 

  • Zeder MA, Emshwiller E, Smith BD, Bradley DG (2006) Documenting domestication. In: Zeder MA, Emshwiller E, Smith BD, Bradley DG (eds) A critical examination of markers of initial domestication in goats (Capra hircus). University of California Press, Berkeley, pp 181–208

    Google Scholar 

  • Zeven AC, de Wet JMJ (1982) Dictionary of cultivated plants and their regions of diversity. Wageningen

  • Zohary D (1999) Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. Genet Resour Crop Evol 46:133–142

    Article  Google Scholar 

  • Zohary D (2004) Unconscious selection and the evolution of domesticated plants. Econ Bot 58:5–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korous Khoshbakht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammer, K., Khoshbakht, K. A domestication assessment of the big five plant families. Genet Resour Crop Evol 62, 665–689 (2015). https://doi.org/10.1007/s10722-014-0186-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-014-0186-2

Keywords

Navigation