Advertisement

Genetic Resources and Crop Evolution

, Volume 62, Issue 3, pp 431–441 | Cite as

Variation of sesquiterpene lactone contents in Lactuca georgica natural populations from Armenia

  • Alex Beharav
  • Anna Stojakowska
  • Roi Ben-David
  • Janusz Malarz
  • Klaudia Michalska
  • Wanda Kisiel
Research Article

Abstract

A comparative phytochemical study of seven sesquiterpene lactones in natural populations of the wild lettuce Lactuca georgica Grossh. (Asteraceae) was performed, based on 17 accessions derived from seven localities representing three regions in Armenia. The compounds were profiled and quantified in roots and leaves of the plants, grown from achenes (cypselas) in a glasshouse under controlled conditions. The contents of major sesquiterpene lactones were estimated in the plant materials by HPLC/PDA, including the germacranolide glucoside—lactuside A and the guaianolides: lactucin, 11β,13-dihydrolactucin, its three esters (at C-8) with acetic, p-hydroxyphenylacetic and methacrylic acids and its 15-O-glucoside (cichorioside B). The plant roots could be characterized by the occurrence of lactuside A and two 11β,13-dihydrolactucin derivatives (acetate and methacrylate) in relatively high amounts. Lactucin and 11β,13-dihydrolactucin were major sesquiterpene constituents in the plant leaves. An analysis of quantitative results of these seven constituents led to the following conclusions: (1) the sesquiterpene lactone contents varied widely, mostly between-populations for root samples, but mostly within-populations for leaf samples, (2) these differences are likely to be genetically controlled since all accessions were grown under standardized glasshouse conditions. This study is probably the first report of detailed screening of L. georgica natural populations and individuals for any trait. The obtained results show that L. georgica, a species within the primary lettuce gene pool, should be considered as an attractive source of germplasm in further research and improvement of cultivated lettuce (Lactuca sativa).

Keywords

Guaianolides Lactuca georgica Lactucin Plant genetic resources Secondary metabolite diversity Wild lettuce 

Notes

Acknowledgments

A. Beharav wish to thank Dr. Alvina Avagian (National Coordinator for plant genetic resources, Armenia) for excellent organization of L. georgica germplasm collectios; Dr Margarita Harutyunyan, Mrs. Marina Hovhannisyan, and Mrs. Ani Petrosyan (Laboratory of Plants Gene Pool and Breeding, Armenian National Agrarian University (ANAU), Yerevan, Armenia), and Dr. Gayane Melyan (Gene Bank of Agricultural Plants and their Wild Relatives, Scientific Center of Agrobiotechnology of ANAU, Echmiadzin, Armenia) for their great technical assistance during the collection trips. We thank Dr. Anna Brook (Remote Sensing Laboratory, Center for Spatial Information Systems Research, University of Haifa, Israel) for her production of Fig. 2. The financial support of the Ministry of Science and Higher Education, Poland (statutory activity founding), is gratefully acknowledged.

References

  1. Beharav A, Pinthus MJ, Cahaner A (1992) Interaction effects of the Rht1 and Rht2 dwarfing alleles and background genes on the growth and grain yield of spring wheat (Triticum aestivum L.). Eur J Agron 1:263–269CrossRefGoogle Scholar
  2. Beharav A, Lewinsohn D, Lebeda A, Nevo E (2006) New wild Lactuca genetic resources with resistance against Bremia lactucae. Genet Resour Crop Evol 53:467–474CrossRefGoogle Scholar
  3. Beharav A, Ben-David R, Doležalová I, Lebeda A (2008) Eco-geographical distribution of Lactuca saligna natural populations in Israel. Israel J Plant Sci 56:195–206CrossRefGoogle Scholar
  4. Beharav A, Ben-David R, Doležalová I, Lebeda A (2010a) Eco-geographical distribution of Lactuca aculeata natural populations in north-eastern Israel. Genet Resour Crop Evol 57:679–686CrossRefGoogle Scholar
  5. Beharav A, Ben-David R, Malarz J, Stojakowska A, Michalska K, Doležalová I, Lebeda A, Kisiel W (2010b) Variation of sesquiterpene lactones in Lactuca aculeata natural populations from Israel, Jordan and Turkey. Biochem Syst Ecol 38:602–611CrossRefGoogle Scholar
  6. Beharav A, Ochoa O, Michelmore R (2014) Resistance in natural populations of three wild Lactuca species from Israel to highly virulent Californian isolates of Bremia lactucae. Genet Resour Crop Evol 61:603–609CrossRefGoogle Scholar
  7. Bennett MH, Gallagher MDS, Bestwick CS, Rossiter JT, Mansfield JW (1994) The phytoalexin response of lettuce to challenge by Botrytis cinerea, Bremia lactucae and Pseudomonas syringae pv. phaseolicola. Physiol Mol Plant Pathol 44:321–333CrossRefGoogle Scholar
  8. Bohlmann F, Jakupovic J, Abraham WR, Zdero C (1981) The first sesquiterpene lactones esterified with a sesquiterpenic acid. Phytochemistry 20:2371–2374CrossRefGoogle Scholar
  9. Chadwick M, Trewin H, Gawthrop F, Wagstaff C (2013) Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci 14:12780–12805CrossRefPubMedCentralPubMedGoogle Scholar
  10. Doležalová I, Křístková E, Lebeda A, Vinter V (2002) Description of morphological characters of wild Lactuca L. spp. genetic resources (English-Czech version). Hortic Sci (Prague) 29:56–83Google Scholar
  11. Dussourd DE (2003) Chemical stimulants of leaf-trenching by cabbage loopers: natural products, neurotransmitters, insecticides, and drugs. J Chem Ecol 29:2023–2047CrossRefPubMedGoogle Scholar
  12. Foster JG, Clapham WM, Belesky DP, Labreveux M, Hall MH, Sanderson MA (2006) Influence of cultivation site on sesquiterpene lactone composition of forage chicory (Cichorium intybus L.). J Agric Food Chem 54:1772–1778CrossRefPubMedGoogle Scholar
  13. Gabrielian E, Fragman-Sapir O (2008) Flowers of the Transcaucasus and adjacent areas: including Armenia, Eastern Turkey, Southern Georgia, Azerbaijan and Northern Iran. Ruggell : A.R.G. Gantner Verlag, K.G. p. 416Google Scholar
  14. Gabrielian E, Zohary D (2004) Wild relatives of food crops native to Armenia and Nakhichevan. Flora Mediterranea 14: 5–80. Edinburgh University Press, PalermoGoogle Scholar
  15. Grass S, Zidorn C, Blattner FR, Stuppner H (2006) Comparative molecular and phytochemical investigation of Leontodon autumnalis (Asteraceae, Lactuceae) populations from Central Europe. Phytochemistry 67:122–131CrossRefPubMedGoogle Scholar
  16. Henderson RH (1984) Application of linear models in animal breeding. University of Guelph press, GuelphGoogle Scholar
  17. Jemelková M, Kitner M, Lebeda A, Sahajová E, Křístková E, Beharav A (2013) Genetic variability of Lactuca aculeata germplasm expressed by AFLP and SSR markers, and by resistance variation against Bremia lactucae. In: Lebeda A, Burdon JJ (eds) Wild plant pathosystems, programme and proceedings of abstracts, 1st international conference. Czech Republic, Olomouc, pp 91–92Google Scholar
  18. Kilian N, Gemeinholzer B, Lack HW (2009) Tribe Cichorieae. In: Funk VA, Susanna A, Stuessy T, Bayer R (eds) Systematics, evolution, and biogeography of the Compositae. International Association for Plant Taxonomy, Vienna, AustriaGoogle Scholar
  19. Kisiel W, Barszcz B (1997) Minor sesquiterpene lactones from Lactuca virosa. Phytochemistry 46:1241–1243CrossRefGoogle Scholar
  20. Kisiel W, Gromek D (1993) Sesquiterpene lactones from Lactuca saligna. Phytochemistry 34:1644–1646CrossRefGoogle Scholar
  21. Kitner M, Lebeda A, Doležalová I, Maras M, Křístková E, Nevo E, Pavlíček T, Meglic V, Beharav A (2008) AFLP analysis of Lactuca saligna germplasm collections from four European and three Middle East countries. Israel J Plant Sci 56:185–193CrossRefGoogle Scholar
  22. Koopman WJM, Zevenbergen MJ, van den Berg RG (2001) Species relationships in Lactuca s.l. (Lactuceae, Asteraceae) inferred from AFLP fingerprints. Am J Bot 88:1881–1887CrossRefPubMedGoogle Scholar
  23. Křístková E, Doležalová I, Lebeda A, Vinter V, Novotná A (2008) Description of morphological characters of lettuce (Lactuca sativa L.) genetic resources. Hortic Sci (Prague) 35:113–129Google Scholar
  24. Lebeda A, Ryder EJ, Grube R, Doležalová I, Křístková E (2007) Lettuce (Asteraceae; Lactuca spp.), Chapter 9. In: Singh R, Boca Raton, FL (eds) genetic resources, chromosome engineering, and crop improvement series, vegetable crops, Volume 3. USA: CRC Press. pp. 377–472Google Scholar
  25. Lebeda A, Doležalová I, Křístková E, Kitner M, Petrželová I, Mieslerová B, Novotná A (2009) Wild Lactuca germplasm for lettuce breeding: current status, gaps and perspectives. Euphytica 170:15–34CrossRefGoogle Scholar
  26. Lebeda A, Kitner M, Křístková E, Doležalová I, Beharav A (2012) Genetic polymorphism in Lactuca aculeata populations and occurrence of natural putative hybrids between L. aculeata and L. serriola. Biochem Syst Ecol 42:113–123CrossRefGoogle Scholar
  27. Lebeda A, Křístková E, Kitner M, Mieslerová B, Jemelková M, Pink DAC (2014) Wild Lactuca species, their genetic diversity, resistance to diseases and pests, and exploitation in lettuce breeding. Eur J Plant Pathol 138:597–640CrossRefGoogle Scholar
  28. Mares D, Romagnoli C, Tosi B, Andreotti E, Chillemi G, Poli F (2005) Chicory extracts from Cichorium intybus L. as potential antifungals. Mycopathologia 160:85–92CrossRefPubMedGoogle Scholar
  29. Michalska K, Kisiel W (2013) Structural diversity of sesquiterpene lactones in roots of Lactuca viminea. Biochem Syst Ecol 51:16–18CrossRefGoogle Scholar
  30. Michalska K, Stojakowska A, Malarz J, Doležalová I, Lebeda A, Kisiel W (2009) Systematic implications of sesquiterpene lactones in Lactuca species. Biochem Syst Ecol 37:174–179CrossRefGoogle Scholar
  31. Michalska K, Beharav A, Kisiel W (2014) Sesquiterpene lactones from roots of Lactuca georgica. Phytochem Lett 10:10–12CrossRefGoogle Scholar
  32. Petrželová I, Lebeda A, Beharav A (2011) Resistance to Bremia lactucae in natural populations of Lactuca saligna from some Middle Eastern countries and France. Ann Appl Biol 159:442–455CrossRefGoogle Scholar
  33. Rees SB, Harborne JB (1985) The role of sesquiterpene lactones and phenolics in the chemical defence of the chicory plant. Phytochemistry 24:2225–2231CrossRefGoogle Scholar
  34. SAS Institute Inc (2012) JMP® 10 scripting guide. SAS Institute Inc, Cary, NCGoogle Scholar
  35. Sethi A, McAuslane HJ, Alborn HT, Nagata RT, Nuessly GS (2008) Romaine lettuce latex deters feeding of banded cucumber beetle: a vehicle for deployment of biochemical defenses. Entomol Exp Appl 128:410–420CrossRefGoogle Scholar
  36. Song Q, Gomez-Barrios ML, Hopper EL, Hjortso MA, Fischer NH (1995) Biosynthetic studies of lactucin derivatives in hairy root cultures of Lactuca floridana. Phytochemistry 40:1659–1665CrossRefGoogle Scholar
  37. Stojakowska A, Michalska K, Malarz J, Beharav A, Kisiel W (2013) Root tubers of Lactuca tuberosa as a source of antioxidant phenolic compounds and new furofuran lignans. Food Chem 138:1250–1255CrossRefPubMedGoogle Scholar
  38. van Beek TA, Maas P, King BM, Leclercq E, Voragen AGJ, de Groot A (1990) Bitter sesquiterpene lactones from chicory roots. J Agric Food Chem 38:1035–1038CrossRefGoogle Scholar
  39. Zidorn C (2008) Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Phytochemistry 69:2270–2296CrossRefPubMedGoogle Scholar
  40. Zohary D (1991) The wild genetic resources of cultivated letucce (Lactuca sativa L.). Euphytica 53:31–35CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Alex Beharav
    • 1
  • Anna Stojakowska
    • 2
  • Roi Ben-David
    • 3
  • Janusz Malarz
    • 2
  • Klaudia Michalska
    • 2
  • Wanda Kisiel
    • 2
  1. 1.Institute of EvolutionUniversity of HaifaHaifaIsrael
  2. 2.Department of Phytochemistry, Institute of PharmacologyPolish Academy of SciencesKrakowPoland
  3. 3.Institute of Plant SciencesAgriculture Research Organization (ARO), Volcani CenterBet DaganIsrael

Personalised recommendations