Advertisement

Genetic Resources and Crop Evolution

, Volume 61, Issue 2, pp 499–510 | Cite as

Fruit morphological descriptors as a tool for discrimination of Daucus L. germplasm

  • Najla Mezghani
  • Imen Zaouali
  • Wided Bel Amri
  • Slim Rouz
  • Philipp W. Simon
  • Chérif Hannachi
  • Zeineb Ghrabi
  • Mohamed Neffati
  • Béchir Bouzbida
  • David M. Spooner
Research Article

Abstract

Fruits present major morphological characters used to define genera and species within the Apiaceae. Northern Africa represents a major center of diversity of Daucus, with Tunisia containing at least 12 species and six subspecies. We assessed 14 mature fruit characters from the Daucus L. germplasm collection at the National Gene Bank of Tunisia. Quantification of variability for each character was investigated using the standardized Shannon–Weaver diversity index (H′). Diversity was established by factorial analysis of correspondence and cluster analysis. The computing H′ index ranged from 0.31 for stylopodium shape to a maximum of 0.81 for spine shape. A mean diversity index for all traits recorded across all populations averaged 0.58 indicating existence of an important genetic diversity within the collection. Multivariate analysis of factorial correspondence and cluster analysis on morphological descriptors permitted the subdivision of the Daucus collection into five distinct groups including one single accession group, two groups with six accessions, one group of nine accessions and one large group with 81 accessions corresponding each one to a species among Daucus except the large group corresponding to D. carota and D. capillifolius. The grouping of populations did not reflect bioclimatic and geographic patterns, suggesting adaptation of populations to local environments. Of equal importance, our study shows the effectiveness of fruit characters alone to identify species in this collection of Daucus.

Keywords

Daucus Diversity Multivariate analysis Species Tunisia 

References

  1. Akalin Uruşak E, Kizilarslan C (2013) Fruit anatomy of some Ferulago (Apiaceae) species in Turkey. Turk J Bot 37:434–445Google Scholar
  2. Al Khanjari S, Filatenko AA, Hammer K, Buerkert A (2008) Morphological spike diversity of Omani wheat. Genet Resour Crop Evol 55:1185–1195CrossRefGoogle Scholar
  3. Aradhya MK, Dangl GS, Prins BH, Boursiquot JM, Walker MA, Meredith CP, Simon CJ (2003) Genetic structure and differentiation in cultivated grape Vitis vinifera L. Genet Res 81:179–192PubMedCrossRefGoogle Scholar
  4. Bonilla-Barbosa J, Novelo A, Hornelas Orozco J, Marquez-Guzman J (2000) Comparative seed morphology of Mexican Nymphaea species. Aquat Bot 68:189–204CrossRefGoogle Scholar
  5. Bradeen JM, Bach IC, Briard M, le Clerc V, Grzebelus D, Senalik DA, Simon PW (2002) Molecular diversity analysis of cultivated carrot (Daucus carota L.) and wild Daucus populations reveals a genetically nonstructured composition. J Am Soc Hortic Sci 127:383–391Google Scholar
  6. Emberger L (1966) Une classification biogéographique des climats. Recherche et travaux de laboratoire de Géologie, Botanique et Zoologie. Facult Sci Montpellier France 7:1–43Google Scholar
  7. Grzebelus D, Baranski R, Spalik K, Allender C, Simon PW (2011) Daucus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, vol 5., Vegetables, Springer, Berlin, pp 91–113Google Scholar
  8. Guetet A, Zammouri J, Boussaid M, Neffati M (2009) The use of reproductive vigor descriptors to study genetic variability in wild populations of Allium roseum L. (Alliaceae) in Tunisia. Sci Hortic 120:282–287CrossRefGoogle Scholar
  9. Hartman RL, Nesom GL (2012) Taxonomy of the genus Vesper (Apiaceae). Phytoneuron 94:1–9Google Scholar
  10. Heywood VH (1968) Daucus L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea. University Press, Cambridge, pp 373–375Google Scholar
  11. Iorizzo M, Senalik DA, Ellison SL, Grzebelus D, Cavagnaro PF, Allender C, Brunet J, Spooner DM, Van Deynze A, Simon PW (2013) Genetic structure and domestication of carrot (Daucus carota subsp. sativus L.) (Apiaceae). Am J Bot 100:930–938PubMedCrossRefGoogle Scholar
  12. Iovene M, Grzebelus E, Carputo D, Jiang J, Simon PW (2008) Major cytogenetic landmarks and karyotype analysis in Daucus carota and other Apiaceae. Am J Bot 95:793–804PubMedCrossRefGoogle Scholar
  13. IPGRI (1998) Descriptors for wild and cultivated carrot (Daucus carota L.). International Plant Genetic Resources Institute, RomeGoogle Scholar
  14. Le Floc’h E, Boulos L, Vela E (2010) Catalogue synonymique commenté de la flore de Tunisie. Banque Nationale des Gènes de la Tunisie, TunisGoogle Scholar
  15. McCollum GD (1975) Interspecific hybrid Daucus carota × D. capillifolius. Bot Gaz 136:201–206CrossRefGoogle Scholar
  16. McCollum GD (1977) Hybrids of Daucus gingidium with cultivated carrots (D. carota subsp. sativus) and D. capillifolius. Bot Gaz 138:56–63CrossRefGoogle Scholar
  17. Nesom GL (2012) Taxonomy of Polytaenia (Apiaceae): P. nuttallii and P. texana. Phytoneuron 66:1–12Google Scholar
  18. Peterson CE, Simon PW (1986) Carrot breeding. In: Basset MJ (ed) Breeding vegetable crops. AVI, Westport, pp 321–356Google Scholar
  19. Pottier Alapetite G (1979) Daucus. In: Flore de la Tunisie, Angiospermes-Dicotyledones, Apetales, Dialypetales. Imprimerie Officielle de la République Tunisienne, Tunis, pp 615–621Google Scholar
  20. Pujadas Salvà A (2003) Daucus. In: Nieto Feliner G, Jury SL, Herrero A (eds) Flora Iberica: Plantas vasculares de la península Ibérica e islas Baleares, vol. X, Araliaceae-Umbelliferae. Real Jardín Botánico, CSIC, Madrid, pp 97–125Google Scholar
  21. Rhimi A, Hannachi H, Hjaoujia S, Boussaid M (2013) The use of morphological descriptors to study variability in wild populations of Capparis spinosa L. (Capparaceae) in Tunisia. Afr J Ecol 51:47–54CrossRefGoogle Scholar
  22. Sáenz Laín C (1981) Research on Daucus L. (Umbelliferae). Actas III Congr ÓPTIMA. An Jard Bot Madr 37:481–534Google Scholar
  23. SAS (1990) Statistical Analysis System, version V.9.1. SAS/STAT Users Guide. SAS Publishing, North CarolinaGoogle Scholar
  24. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  25. Simon PW (1984) Carrot genetics. Plant Mol Biol Rep 2:54–63CrossRefGoogle Scholar
  26. Small E (1978) A numerical taxonomic analysis of the Daucus carota complex. Canad J Bot 56:248–276CrossRefGoogle Scholar
  27. Spalik K, Downie SR (2007) Intercontinental disjunctions in Cryptotaenia (Apiaceae, Oenantheae): an appraisal using molecular data. J Biogeogr 34:2039–2054CrossRefGoogle Scholar
  28. Spooner D, Rojas P, Bonierbale M, Mueller LA, Srivastav M, Senalik D, Simon PW (2013a) Molecular phylogeny of Daucus. Syst Bot 38(3):850–857Google Scholar
  29. Spooner DM, Widrlechner MP, Reitsma KR, Palmquist DE, Simon PW (2013b) Reassessment of practical species identifications of the USDA Daucus carota germplasm collection: morphological data [abstract]. International Carrot Conference, Paper No. 505Google Scholar
  30. Sudré CP, Gonçalves LSA, Rodrigues R, do Amaral Júnior AT, Riva-Souza EM, Bento Cdos S (2010) Genetic variability in domesticated Capsicum ssp. as assessed by morphological and agronomic data in mixed statistical analysis. Genet Mol Res 9:283–294PubMedCrossRefGoogle Scholar
  31. Teil H (1975) Correspondence factor analysis: an outline of its method. Math Geol 7:3–12Google Scholar
  32. Vaughan JG, Geissler CA (2009) The new Oxford book of food plants. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2013

Authors and Affiliations

  • Najla Mezghani
    • 1
  • Imen Zaouali
    • 1
  • Wided Bel Amri
    • 1
    • 2
  • Slim Rouz
    • 3
  • Philipp W. Simon
    • 4
  • Chérif Hannachi
    • 5
  • Zeineb Ghrabi
    • 6
  • Mohamed Neffati
    • 7
  • Béchir Bouzbida
    • 7
  • David M. Spooner
    • 4
  1. 1.Banque Nationale de GènesTunisTunisia
  2. 2.Faculté des Sciences de TunisTunisTunisia
  3. 3.Institut Supérieur Agronomique de MogranMogranTunisia
  4. 4.USDA-ARS, Vegetable Crops Research Unit, Department of HorticultureUniversity of WisconsinMadisonUSA
  5. 5.Institut Supérieur Agronomique de Chott MariemChott MariemTunisia
  6. 6.Institut National Agronomique de TunisieTunisTunisia
  7. 7.Institut des Régions AridesMedenineTunisia

Personalised recommendations