Advertisement

Genetic Resources and Crop Evolution

, Volume 61, Issue 1, pp 247–266 | Cite as

Nuclear intron-targeting markers in genetic diversity analysis of black nightshade (Solanum sect. Solanum, Solanaceae) accessions

  • Péter Poczai
  • István Cernák
  • Ildikó Varga
  • Jaakko Hyvönen
Research Article

Abstract

Different molecular markers are routinely used in studies of potato (Solanum tuberosum) and the genus Solanum in general. Genome sequence databases provide potential to design new markers for various applications. Here we present the application of a recently developed core set of nuclear intron-targeting (indel) markers. These markers are based on the fact that in the plant genome introns are more variable than exons; therefore primers flanking exons can reveal polymorphisms related to introns. We detected such variation among accessions of the eight different species of black nightshades (Solanum sect. Solanum). Members of this group are important sources of food, mostly in Africa, while others are poisonous weeds with near global distribution. The tested 29 primers were designed previously for potato based on Solanaceae EST and other genomic databases and targeted 16 different genes. Our results showed that Solanum intron-targeting markers are not very polymorphic but identified considerable structure among accessions indicating fairly high interspecies differentiation. Further analyses showed that inbreeding is unlikely to be the major driving force in determining the genetic structure of the analyzed species. All phylogenetic analyses resolved the species included in our study as distinct clades with high support values, but provided weak information about their internal relationships. In summary, indel markers would be useful for the assignment of new Solanum germplasm to taxonomic groups or to identify certain taxa. They could also be used to address important question about genetic diversity and should yield results comparable to other markers covering the whole genome.

Keywords

Cross-species amplification Expressed sequence tags Gene-targeted markers Genetic data mining Indels Marker transferability 

Notes

Acknowledgments

PP gratefully acknowledges support from a Marie Curie Fellowship Grant (PIEF-GA-2011-300186) under the seventh framework program of the European Union. This study was partially supported by a Hungarian Eötvös Research Grant and a Campus Hungary Grant provided to IV. IC is supported by the János Bolyai Research Fellowship of the Hungarian Academy of Sciences.

Supplementary material

10722_2013_31_MOESM1_ESM.png (63 kb)
Supplementary material Convergence of the sampler and posterior densities for θ B. Estimates are based on the f = 0 model. Plots show the posterior density (upper plot) and the sample history (lower plot) of θ B. (PNG 63 kb)
10722_2013_31_MOESM2_ESM.png (193 kb)
Supplementary material The plots show the partial graphical exploration of the output from the four different runs of the intron-targeting dataset analyzed in MrBayes v.3.2. The first graphs in the upper and lower row are trace plots of the log likelihood (lnL) and the sampled values. Burn in is not shown on the plots and all runs reach stationarity. Blue and red traces indicate run1 and run2 in the upper left, while in the lower left run3 and run4, respectively. The second graph is a bivariate plot of the split frequencies for run1 and run2 (upper right) and run3 and run4 (lower left) created with AWTY. The high correlation shows convergence of the runs. (PNG 193 kb)
10722_2013_31_MOESM3_ESM.png (84 kb)
Supplementary material Character reconstructions mapped on the strict parsimony consensus tree. Black dots represent synapomorphic changes while white dots designate homoplasies. (PNG 84 kb)

References

  1. Ames M, Spooner DM (2010) Phylogeny of Solanum series Piurana and related species in Solanum section Petota based on five conserved ortholog sequences. Taxon 59:1091–1101Google Scholar
  2. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  3. Boris KV, Ryzhova NN, Kochieva EZ (2011) Identification and characterization of intraspecific variability of the sucrose synthase gene Sus4 of potato (Solanum tuberosum). Russ J Genet 47:168–175CrossRefGoogle Scholar
  4. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedCentralPubMedGoogle Scholar
  5. Britten RJ, Rowen L, Williams J, Cameron RA (2003) Majority of divergence between closely related DNA samples is due to indels. PNAS 100:661–4665CrossRefGoogle Scholar
  6. Cai D, Rodríguez F, Teng Y, Ané C, Bonierbale M, Mueller LA, Spooner DM (2012) Single copy nuclear gene analysis of polyploidy in wild potatoes (Solanum section Petota). BMC Evol Biol 12:70PubMedCentralPubMedCrossRefGoogle Scholar
  7. Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19PubMedCentralPubMedCrossRefGoogle Scholar
  8. Colon LT, Eijlander R, Budding DJ, Pieters MMJ, Hoogendoorn J, Van-Ijzendoorn MT (1993) Resistance to potato late blight (Phytophthora infestans (Mont.) de Bary) in Solanum nigrum, S. villosum and their sexual hybrids with S. tuberosum and S. demissum. Euphytica 66:55–64CrossRefGoogle Scholar
  9. D’Agostino N, Golas T, van de Geest H, Bombarely A, Dawood T, Zethof J, Driedonks N, Wijnker E, Bargsten J, Nap JP, Mariani C, Rieu I (2013) Genomic analysis of the native European Solanum species S. dulcamara. BMC Genomics 14:356PubMedCentralPubMedCrossRefGoogle Scholar
  10. De Keyser E, De Riek J, Van Bockstaele E (2009) Discovery of species-wide EST-derived markers in Rhododendron by intron-flanking primer design. Mol Breeding 23:171–178CrossRefGoogle Scholar
  11. Dehmer KJ (2001) Conclusions on the taxonomy of the Solanum nigrum complex by molecular analysis of IPK germplasm accessions. In: van den Berg RG, Barendse GWM, van der Weerden GM, Mariani C (eds) Solanaceae V: advances in taxonomy and utilization. Nijmegen University Press, The Netherlands, pp 85–96Google Scholar
  12. Dehmer KJ, Hammer K (2004) Taxonomic status and geographic provenance of germplasm accessions in the Solanum nigrum L complex: AFLP data. Genet Resour Crop Evol 51:551–558CrossRefGoogle Scholar
  13. Dehmer KJ, Stracke S (1999) Molecular analyses of genebank accessions of the Solanum nigrum complex. In: Andrews S, Leslie AC, Alexander C (eds) Third international symposium on the taxonomy of cultivated plants. Royal Botanic Gardens, Kew, pp 343–345Google Scholar
  14. Draffehn AM, Meller S, Li L, Gebhardt C (2010) Natural diversity of potato (Solanum tuberosum) invertases. BMC Plant Biol 10:271PubMedCentralPubMedCrossRefGoogle Scholar
  15. Dwivedi SL, Crouch JH, Mackill DJ, Xu Y, Blair MW, Ragot M, Upadhyaya HD, Ortiz R (2007) The molecularization of public sector crop breeding: progress, problems, and prospects. Adv Agron 95:163–318CrossRefGoogle Scholar
  16. Edmonds JM (1979) Biosystematics of Solanum L. section Solanum (Maurella). In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Academic Press, London, pp 529–548Google Scholar
  17. Edmonds JM, Chweya JA (1997) Black nightshades. Solanum nigrum L. and related species. Promoting the conservation and use of underutilized and neglected crops, vol 15. International Plant Genetic Resources Institute, Rome, ItalyGoogle Scholar
  18. Eijlander R, Stiekema WJ (1994) Biological containment of potato (Solanum tuberosum): outcrossing to the related wild species black nightshade (Solanum nigrum) and bittersweet (Solanum dulcamara). Sex Plant Reprod 7:29–40CrossRefGoogle Scholar
  19. Farris JS (1989) The retention index and homoplasy excess. Syst Zool 38:406–407CrossRefGoogle Scholar
  20. Farris JS, Albert V, Källersjö M, Lipscomb D, Kluge AG (1996) Parsimony jackknifing outperforms neighbor-joining. Cladistics 12:99–124CrossRefGoogle Scholar
  21. García-Lor A, Luro F, Navarro L, Ollitrault P (2012) Comparative use of indel and SSR marker sin deciphering the interspecific structure of cultivated citrus genetic diversity: a perspective for genetic association studies. Mol Genet Genomics 287:77–94PubMedCrossRefGoogle Scholar
  22. Golas TM, Sikkema A, Gros J, Feron RM, van den Berg RG, van der Weerden GM, Mariani C, Allefs JJ (2010) Identification of a resistance gene Rpi-dlc1 to Phytophthora infestans in European accessions of Solanum dulcamara. Theor Appl Genet 120:797–808PubMedCentralPubMedCrossRefGoogle Scholar
  23. Golas TM, van de Geest H, Gros J, Sikkema A, D’Agostino N, Nap JP, Mariani C, Allefs JJ, Rieu I (2013) Comparative next-generation mapping of the Phytophthora infestans gene Rpi-dlc2 in the European species Solanum dulcamara. Theor Appl Genet 126:59–68PubMedCrossRefGoogle Scholar
  24. Goloboff PA (1994) NONA: a tree searching program. Program and documentation. www.cladistics.com/aboutNona.htm
  25. Gorji AM, Matyas KK, Dublecz Z, Decsi K, Cernak I, Hoffmann B, Taller J, Polgar Z (2012) In vitro osmotic stress tolerance in potato and identification of major QTLs. Am J Pot Res 89:453–464CrossRefGoogle Scholar
  26. Hachiken T, Sato K, Hasegawa T, Ichitani K, Kawase M, Fukunaga K (2013) Geographical distribution of waxy gene SNPs and indels in foxtail millet, Setaria italic (L.) P. Beauv. Genet Resour Crop Evol 60:1559–1570CrossRefGoogle Scholar
  27. Haile JK, Hammer K, Badebo A, Nachit MM, Röder MS (2013) Genetic diversity assessment of Ethiopian tetraploid wheat landraces and improved durum wheat varieties using microsatellites and markers linked with stem rust resistance. Genet Resour Crop Evol 60:513–527CrossRefGoogle Scholar
  28. Holland JB, Helland SJ, Sharapova N, Rhyne DC (2001) Polymorphism of PCR-based markers targeting exons, introns, promoter regions, and SSRs in maize and introns and repeat sequences in oat. Genome 44:1065–1076PubMedCrossRefGoogle Scholar
  29. Holsinger KE (1999) Analysis of genetic diversity in geographically structured populations: a Bayesian perspective. Hereditas 130:245–255CrossRefGoogle Scholar
  30. Holsinger KE, Lewis PO (2003) HICKORY: a package for the analysis of population genetic data, version 1.0.4. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA. Distributed by the authorsGoogle Scholar
  31. Horsman K, Bergervoet JEM, Jacobsen E (1997) Somatic hybridization between Solanum tuberosum and species of the S. nigrum complex: selection of vigorously growing and flowering plants. Euphytica 96:345–352CrossRefGoogle Scholar
  32. Hu J, Seiler G, Kole C (2010) Genetics, genomics and breeding of sunflower. CRC Press, RoutledgeCrossRefGoogle Scholar
  33. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  34. Jacoby A, Labuschagne MT, Viljoen CD (2003) Genetic relationships between Southern African Solanum retroflexum Dun and other related species measured by morphological and DNA markers. Euphytica 132:109–113CrossRefGoogle Scholar
  35. Kimura M (1983) Rare variant alleles in the light of the neutral theory. Mol Biol Evol 1:84–93PubMedGoogle Scholar
  36. Kimura M, Crow J (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738PubMedGoogle Scholar
  37. Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of Anurans. Syst Zool 18:1–32CrossRefGoogle Scholar
  38. Lebecka R (2008) Host–pathogen interaction between Phytophthora infestans and Solanum nigrum, S. villosum, and S. scabrum. Eur J Plant Pathol 120:233–240CrossRefGoogle Scholar
  39. Lehmann C, Biela C, Töpfl S, Jansen G, Vögel R (2007) Solanum scabrum—a potential source of a coloring plant extract. Euphytica 158:189–199CrossRefGoogle Scholar
  40. Levin RA, Blanton J, Miller JS (2009) Phylogenetic utility of nuclear nitrate reductase: a multi-locus comparison of nuclear and chloroplast sequence data for inference of relationships among American Lycieae (Solanaceae). Mol Phylogenet Evol 50:608–617PubMedCrossRefGoogle Scholar
  41. Lewontin RC (1972) The apportionment of human diversity. Evol Biol 6:391–398Google Scholar
  42. Liu BH (1998) Statistical genomics: linkage, mapping and QTL analysis. CRC Press, Boca RatonGoogle Scholar
  43. Manoko MLK, van den Berg RG, Feron RMC, van der Weerden GM, Mariani C (2007) AFLP markers support separation of Solanum nodiflorum from Solanum americanum sensu stricto (Solanaceae). Plant Syst Evol 267:1–11CrossRefGoogle Scholar
  44. Manoko MLK, van den Berg RG, Feron RMC, van der Weerden GM, Mariani C (2008) Genetic diversity of the African hexaploid species of Solanum scabrum Mill. and Solanum nigrum L. (Solanaceae). Genetic Res Crop Evol 55:409–418CrossRefGoogle Scholar
  45. Morales M, Roig E, Monforte AJ, Arús P, Garcia-Mas J (2004) Single-nucleotide polymorphisms detected in expressed sequence tags of melon (Cucumis melo L.). Genome 47:352–360PubMedCrossRefGoogle Scholar
  46. Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, Ahrens R, Wang Y et al (2005) The SOL genomics network: a comparative resource for solanaceae biology and beyond. Plant Physiol 138:1310–1317PubMedCentralPubMedCrossRefGoogle Scholar
  47. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  48. Nagy S, Poczai P, Cernák I, Gorji AM, Hegedűs G, Taller J (2012) PICcalc: an online program to calculate polymorphic information content for molecular genetic studies. Biochem Genet 50:9–10CrossRefGoogle Scholar
  49. Nei M (1973) Analysis of gene diversity in subdivided populations. PNAS USA 70:3321–3323PubMedCrossRefGoogle Scholar
  50. Nixon KC (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414CrossRefGoogle Scholar
  51. Nixon KC (2002) Winclada. Version 1.00.08. http://www.cladistics.com/aboutWinc.htm. Ithaca, NY
  52. Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24:581–583PubMedCrossRefGoogle Scholar
  53. Olet EA, Huen M, Lye KA (2005) African crop or poisonous nightshade; the enigma of poisonous or edible black nightshades solved. Afr J Ecol 43:158–161CrossRefGoogle Scholar
  54. Park S, Yu HJ, Mun JH, Lee SC (2010) Genome-wide discovery of DNA polymorphism in Brassica rapa. Mol Genet Genomics 283:135–145PubMedCrossRefGoogle Scholar
  55. Poczai P, Hyvönen J (2011) On the origin of Solanum nigrum: can networks help? Mol Biol Rep 38:1171–1185PubMedCrossRefGoogle Scholar
  56. Poczai P, Cernák I, Gorji AM, Nagy S, Taller J, Polgár J (2010) Development of intron-targeting (IT) markers for potato and cross-species amplification in Solanum nigrum (Solanaceae). Amer J Bot 97:e142–e145CrossRefGoogle Scholar
  57. Poczai P, Varga I, Bell NE, Hyvönen J (2011) Genetic diversity assessment of bittersweet (Solanum dulcamara, Solanaceae) germplasm using conserved DNA-derived polymorphism and intron-targeting markers. Ann Appl Biol 159:141–153CrossRefGoogle Scholar
  58. Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JPT, Hyvönen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9:6PubMedCentralPubMedCrossRefGoogle Scholar
  59. Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195CrossRefGoogle Scholar
  60. Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivar. Theor Appl Genet 98:107–112CrossRefGoogle Scholar
  61. Rambaut A, Drummond AJ (2007) Tracer v1.4. http://tree.bio.ed.ac.uk/software/tracer/. Accessed 13 Feb 2013
  62. Rodríguez F, Spooner DM (2009) Nitrate reductase phylogeny of potato (Solanum sect. Petota) genomes with emphasis on the origins of the polyploid species. Syst Bot 34:207–219CrossRefGoogle Scholar
  63. Rodríguez F, Wu F, Ané C, Tanksley S, Spooner DM (2009) Do potatoes and tomatoes have a single evolutionary history, and what proportion of the genome supports this history? BMC Evol Biol 9:191PubMedCentralPubMedCrossRefGoogle Scholar
  64. Schippers RR (2000) African indigenous vegetables. An overview of the cultivated species. Natural Resources Institute/ACPEU Technical Centre of Agriculture and Rural Cooperation, Catham, pp 147–176Google Scholar
  65. Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337CrossRefGoogle Scholar
  66. Spooner DM, Rodríguez F, Polgár Z, Ballerd HE, Jansky SH (2008) Genomic origins of potato polyploids: GBSSI gene sequencing data. Crop Sci 48:S27–S36Google Scholar
  67. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analysis with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  68. Stöver BC, Müller KF (2010) TreeGraph2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11:7PubMedCentralPubMedCrossRefGoogle Scholar
  69. Sun J, Loboda T, Sung SS, Black CC (1992) Sucrose synthase in wild tomato, Lycopersicon chmielewskii, and tomato fruit skin strength. Plant Physiol 98:1163–1169PubMedCentralPubMedCrossRefGoogle Scholar
  70. Tepe EJ, Bohs L (2010) A molecular phylogeny of Solanum sect. Pteroidea (Solanaceae) and the utility of COSII markers in resolving relationships among closely related species. Taxon 59:733–743Google Scholar
  71. Vasemägi A, Gross R, Plam D, Paaver T, Primmer CR (2010) Discovery and application of insertion-deletion (INDEL) polymorphisms for QTL mapping of early life-history traits in Atlantic salmon. BMC Genomics 11:156PubMedCentralPubMedCrossRefGoogle Scholar
  72. Walbot V, Warren C (1988) Regulation of Mu element copy number in maize lines with an active or inactive Mutator transposable element system. Mol Gen Genet 211:27–34PubMedCrossRefGoogle Scholar
  73. Wang F, Smith A, Brenner ML (1994) Temporal and spatial expression pattern of sucrose synthase during tomato fruit development. Plant Physiol 104:535–540PubMedCentralPubMedGoogle Scholar
  74. Wang Y, Chen J, Francis DM, Shen H, Wu T, Yang W (2010) Discovery of intron polymorphisms in cultivated tomato using both tomato and Arabidopsis genomic information. Theor Appl Genet 121:1199–1207PubMedCrossRefGoogle Scholar
  75. Weese TL, Bohs L (2007) A three-gene phylogeny of the genus Solanum (Solanaceae). Syst Bot 32:445–463CrossRefGoogle Scholar
  76. Wu F, Mueller LA, Crouzillat D, Pétiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420PubMedCrossRefGoogle Scholar
  77. Xiong Z, Zhang S, Wang Y, Ford-Lloyd BV, Tu M, Jin X, Wu Y, Yan H, Yang X, Liu P et al (2010) Differentiation and distribution of indica and japonica rice varieties along the altitude gradients in Yunnan Province of China as revealed by InDel molecular markers. Genet Resour Crop Evol 57:891–902CrossRefGoogle Scholar
  78. Xu G, Ma H, Nei M, Kong H (2009) Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. PNAS 106:835–840PubMedCrossRefGoogle Scholar
  79. Yeh FC, Yang R-C, Boyle TJB, Ye Z-H, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, MNGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Péter Poczai
    • 1
  • István Cernák
    • 2
  • Ildikó Varga
    • 1
  • Jaakko Hyvönen
    • 1
  1. 1.Plant Biology, Department of BiosciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Potato Research Centre, Centre of Agricultural SciencesUniversity of PannoniaKeszthelyHungary

Personalised recommendations