Genetic Resources and Crop Evolution

, Volume 60, Issue 8, pp 2331–2342 | Cite as

Differentiation between fiber and drug types of hemp (Cannabis sativa L.) from a collection of wild and domesticated accessions

  • G. Piluzza
  • G. Delogu
  • A. Cabras
  • S. Marceddu
  • S. Bullitta
Research Article


Accessions of wild and domesticated hemp (Cannabis sativa L.) originating from Colombia, Mexico, California, Bolivia, Thailand, Afghanistan, Serbia, Hungary, south Africa and different regions of China, were studied by means of DNA polymorphisms in order to discriminate between drug and fiber types. Analysis of molecular variance (AMOVA) was used to partition the total genetic variance within and among populations. The significance of the variance components was tested by calculating their probabilities based on 999 random permutations. AMOVA revealed 74 % variation among accessions and 26 % within accessions, all AMOVA variation was highly significant (P < 0.001). The cluster analysis of molecular data, grouped accessions into eight clusters and gave a matrix correlation value of r = 0.943, indicating a very good fit between the similarity values implied by the phenogram and those of the original similarity matrix. In this study, DNA polymorphisms could discriminate the fiber and drug types, and accessions were grouped in accordance to their classification and uses. In addition, seed size variation and micromorphological characters of seeds were studied by means of a scanning electron microscope (SEM). Seeds varied significantly in size, and were bigger in the fiber types. SEM analysis exhibited variation of micromorphological characters of seeds that could be important for discriminating the fiber or drug types.


Cannabis sativa DNA polymorphisms Drug type Fiber type Seeds SEM 



Thanks are due to dr. E.P.M. De Meijer from Hortapharm B.V., Amsterdam, and Dr. R. Clarke from International Hemp Association (IHA) Amsterdam for kindly providing the hemp accessions.


  1. Afifi AA, Clark V (1984) Computer aided multivariate analysis. Lifetime Learning Publ, BelmontGoogle Scholar
  2. Anderson LC (1974) A study of systematic wood anatomy in Cannabis. Harvard Univ Bot Mus Leafl 24:29–36Google Scholar
  3. Anderson LC (1980) Leaf variation among Cannabis species from a controlled garden. Harvard Univ Bot Mus. Leafl 28:61–69Google Scholar
  4. Brennelsen R (1984) Psychotrope Drogen. Pharm Acta Helv 59:247–259Google Scholar
  5. Broseus J, Anglada F, Esseiva P (2010) The differentiation of fibre- and drug type Cannabis seedlings by gas chromatography/mass spectrometry and chemometric tools. Forensic Sci Int 200:87–92PubMedCrossRefGoogle Scholar
  6. Bruci Z, Papoutsis I, Athanaselis S, Nikolaou P, Pazari E, Spiliopoulou C, Vyshka G (2012) First systematic evaluation of the potency of Cannabis sativa plants grown in Albania. Forensic Sci Int 222:40–46PubMedCrossRefGoogle Scholar
  7. Buss CC, Lammers TG, Wise RR (2001) Seed coat morphology and its systematic implications in Cyanea and other genera of Lobelioideae (Campanulaceae). Am J Bot 88:1301–1308PubMedCrossRefGoogle Scholar
  8. Caffarel MM, Andradas C, Pèrez-Gόmez E, Guzmán M, Sánchez C (2012) Cannabinoids: a new hope for breast cancer therapy? Cancer Treat Rev 38:911–918PubMedCrossRefGoogle Scholar
  9. Datwyler SL, Weiblen GD (2006) Genetic variation in hemp and marijuana (Cannabis sativa L.) according to amplified fragment length polymorphisms. J Forensic Sci 51(2):371–375PubMedCrossRefGoogle Scholar
  10. De Backer B, Debrus B, Lebrun P, Theunis L, Dubois N, Decock L, Verstraete A, Hubert P, Charlier C (2009) Innovative development and validation of an HPLC/DAD method for the qualitative and quantitative determination of major cannabinoids in Cannabis plant material. J Chromatogr B 877:4115–4124CrossRefGoogle Scholar
  11. De Queiroz RT, Goulard de Azevedo Tozzi AM, Lewis GP (2013) Seed morphology: an addition to the taxonomy of Tephrosia (Leguminosae, Papilionoideae, Millettieae) from South America. Plant Syst Evol 299:459–470Google Scholar
  12. Dulson J, Scott LM, Ripley VL (1998) Efficacy of bulked DNA samples for RAPD DNA fingerprinting of genetically complex Brassica napus cultivars. Euphytica 102:65–70CrossRefGoogle Scholar
  13. Dunn G, Everitt BS (1982) An introduction to mathematical taxonomy. Cambridge University Press, CambridgeGoogle Scholar
  14. Emboden WA (1974) Cannabis—a polytypic genus. Econ Bot 28:304–310CrossRefGoogle Scholar
  15. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotype: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  16. Faeti V, Mandolino G, Ranalli P (1996) Genetic diversity of Cannabis sativa germplasm based on RAPD markers. Plant breed 115:367–370CrossRefGoogle Scholar
  17. Forapani S, Carboni A, Paoletti C, Moliterni VMC, Ranalli P, Mandolino G (2001) Comparison of hemp varieties using random amplified polymorphic DNA markers. Crop Sci 41(6):1682–1689CrossRefGoogle Scholar
  18. Fuchs L (1542) The great herbal of Leonhart Fuchs: De historia stirpium commentarii insignes (notable commentaries on the history of plants), Stanford University Press: Staford, 1999Google Scholar
  19. Gandhi D, Albert S, Pandya N (2011) Morphological and micromorphological characterization of some legume seeds from Gujarat, India. Env Exp Biol 9:105–113Google Scholar
  20. Gillan R, Cole MD, Linacre A, Thorpe JW, Watson ND (1995) Comparison of Cannabis sativa by random amplification of polymorphic DNA (RAPD) and HPLC of cannabinoids: a preliminary study. Sci Justice 35:169–177PubMedCrossRefGoogle Scholar
  21. Gontcharova SB, Gontcharova AA, Yakubov VV, Kondo K (2009) Seed surface morphology in some representatives of the genus Rhodiola sect. Rhodiola (Crassulaceae) in Russian Far East. Flora 204:17–24CrossRefGoogle Scholar
  22. Hansen R (2009) Industrial hemp profile industrial _hemp_profile.cfm
  23. Hillig KW (2005) Genetic evidence for speciation in Cannabis (Cannabaceae). Genet Resour Crop Evol 52:161–180CrossRefGoogle Scholar
  24. Howard C, Gilmore S, Robertson J, Peakall R (2008) Developmental validation of a Cannabis sativa STR multiplex system for forensic analysis. J Forensic Sci 53:1061–1067PubMedGoogle Scholar
  25. Jagadish V, Robertson J, Gibbs A (1996) RAPD analysis distinguishes Cannabis sativa samples from different sources. Forensic Sci Int 79:113–121CrossRefGoogle Scholar
  26. Javadi F, Yamaguchi H (2004) A note on seed coat and plumule morphological variation in the genus Cicer (Fabaceae). Sci Rep Grad Sch Agric Biol Sci 56:7–16Google Scholar
  27. Koul KK, Ranina N, Raina SN (2000) Seed coat microsculpturing in Brassica and allied genera (Subtribe Brassicinae, Raphanine, Moricandiinae). Ann Bot 86:385–397CrossRefGoogle Scholar
  28. Lamarck JB (1785) Encyclopédie méthodique botanique, Chez Panckoucke, ParisGoogle Scholar
  29. Lehmann T, Brenneisen R (1995) High performance liquid chromatographic profiling of Cannabis products. J Liq Chromatogr 18:689–700CrossRefGoogle Scholar
  30. Li HL (1974) An archeological and historical account of Cannabis in China. Econ Bot 28:437–438CrossRefGoogle Scholar
  31. Mandolino G, Ranalli P (2002) The application of molecular markers in genetic and breeding of hemp. J Ind Hemp 7:7–23CrossRefGoogle Scholar
  32. Mechoulam R (1970) Marijuana chemistry. Science 168:1159–1166PubMedCrossRefGoogle Scholar
  33. Peakall R, Smouse PE (2006). GENALEX V6.1: genetic analysis in excel. Population genetic software for teaching and research. Australian National University Canberra Australia
  34. Pejic B, Vukcevic M, Kostic M, Skundric P (2009) Biosorption of heavy metal ions from aqueous solutions by short hemp fibers: effect of chemical composition. J Hazard Mater 164(1):146–153PubMedCrossRefGoogle Scholar
  35. Piluzza G, Pecetti L, Bullitta S, Piano E (2005) Discrimination among subterranean clover (Trifolium subterraneum L. complex) genotypes using RAPD markers. Genet Resour Crop Evol 52:193–199CrossRefGoogle Scholar
  36. Pinarkara E, Kyis SA, Hakki E, Sag A (2009) RAPD analysis of seized marijuana (Cannabis sativa) in Turkey. Electron J Biotechn 12:1–13Google Scholar
  37. Pommet M, Juntaro J, Heng JY, Mantalaris A, Lee AF, Wilson K, Kalinka G, Shaffer MS, Bismarck A (2008) Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 9:1643–1651PubMedCrossRefGoogle Scholar
  38. Rivoira G (1981) Canapa. In: Baldoni R, Giardini L (eds) Coltivazioni erbacee. Patron, BolognaGoogle Scholar
  39. Rohlf FJ (1992) NTSYS-pc. Numerical taxonomy and multivariate analysis system. Version 1.70. Exeter Software. Setauket, New YorkGoogle Scholar
  40. Russo E (2007) History of Cannabis and its preparations in saga, science and sobriquet. Chem Biodivers 4:1614–1648PubMedCrossRefGoogle Scholar
  41. Schultes RE, Klein WM, Plowman T, Lockwood TE (1974) Cannabis: an example of taxonomic neglect. Harvard Univ Bot Mus Leafl 23:337–367Google Scholar
  42. Shoyama Y, Tamada T, Kurihara K, Takeuchi A, Taura F, Arai S, Blaber M, Shoyama Y, Morimoto S, Kuroki R (2012) Structure and function of ∆1-tetrahydrocannabinolic acid (THCA) synthase, the enzyme controlling the psychoactivity of Cannabis sativa. J Mol Biol 423:96–105PubMedCrossRefGoogle Scholar
  43. Small E, Cronquist A (1976) A practical and natural taxonomy for Cannabis. Taxon 25(4):405–435CrossRefGoogle Scholar
  44. Sneath P, Sokal R (1973) Numerical taxonomy. W H Freeman and Company, San FranciscoGoogle Scholar
  45. Sokal RR (1961) Distance as a measure of taxonomic similarity. Syst Zool 10:70–79CrossRefGoogle Scholar
  46. Stambouli H, El Bouri A, Bellimam MA, Bouayoun T, El Karni N (2005) Cultivation of Cannabis sativa L. in Northern Marocco. Bull Narc, vol. LVII(1–2): 79–118Google Scholar
  47. Vavilov NI (1926) The origin of the cultivation of “primary” crops, in particular cultivated hemp. In: studies on the origin of cultivated plants, Institute of Applied Botany and Plant Breeding (USSR), Leningrad, pp. 221–223Google Scholar
  48. Vavilov NI, Bukinich DD (1929) Agricultural Afghanistan. Bull Appl Bot Leningrad, Suppl.33, 610 ppGoogle Scholar
  49. Williams JK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphism amplified by primers are useful genetic markers. Nucl Acid Res 18:6531–6535CrossRefGoogle Scholar
  50. World Drug Report (2005) United Nations publication, Sales No. E.05.XI.10Google Scholar
  51. Yoshizaki M (2003) Millets in prehistoric remain: Paleobotany on barnyard millets and azuki beans in Japan. In: Yamaguchi H, Kawase M (eds) Natural history of millets. Hokaido University Press, SapporoGoogle Scholar
  52. Zhang ZY, Yang DZ, Lu AM, Knapp S (2005) Seed morphology of the tribe Hyoscyameae (Soloanaceae). Taxon 54:71–83CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • G. Piluzza
    • 1
  • G. Delogu
    • 2
  • A. Cabras
    • 3
  • S. Marceddu
    • 4
  • S. Bullitta
    • 1
  1. 1.CNR-ISPAAM u.o.s. SassariLi Punti-SassariItaly
  2. 2.CNR-ICB u.o.s. SassariLi Punti-SassariItaly
  3. 3.SBAUniversity of SassariSassariItaly
  4. 4.CNR-ISPA u.o.s. SassariLi Punti-SassariItaly

Personalised recommendations