Genetic Resources and Crop Evolution

, Volume 60, Issue 2, pp 605–619 | Cite as

Genetic diversity, conservation, and utilization of Theobroma cacao L.: genetic resources in the Dominican Republic

  • Edward J. Boza
  • Brian M. Irish
  • Alan W. Meerow
  • Cecile L. Tondo
  • Orlando A. Rodríguez
  • Marisol Ventura-López
  • Jaime A. Gómez
  • J. Michael Moore
  • Dapeng Zhang
  • Juan Carlos Motamayor
  • Raymond J. Schnell
Research Article


Cacao (Theobroma cacao L.) is a significant agricultural commodity in the Dominican Republic, which ranks 11th in the world for cacao exports. To estimate genetic diversity, determine genetic identity, and identify any labeling errors, 14 SSR markers were employed to fingerprint 955 trees among cacao germplasm accessions and local farmer selections (LFS). Comparisons of homonymous plants across plots revealed a significant misidentification rate estimated to be 40.9 % for germplasm accessions and 17.4 % for LFS. The 14 SSRs amplified a total of 117 alleles with a mean allelic richness of 8.36 alleles per locus and average polymorphism information content (PIC) value of 0.67 for the germplasm collection. Similar levels of variation were detected among the LFS where a total of 113 alleles were amplified with a mean of 8.07 alleles per locus and PIC of 0.57. The observed heterozygosity (Hobs) was 0.67 for the germplasm collection and 0.60 for LFS. Based on population structure analysis 43.9 % of the germplasm accessions and 72.1 % of the LFS are predominantly of the Amelonado ancestry. Among these Amelonado, 51.7 % for the germplasm collection and 50.6 % for LFS corresponded to Trinitario hybrid lineage. Criollo ancestry was found in 7.6 and 9.5 % of the germplasm accessions and LFS, respectively. The Contamana, Nacional, and Iquitos backgrounds were also observed in both populations, but the Curaray background was only detected in the germplasm accessions. No Purús or Guiana ancestry was found in either of the populations. Overall, significant genetic diversity, which could be exploited in the Dominican Republic breeding and selection programs, was identified among the germplasm accessions and LFS.


Theobroma cacao Cacao improvement Gene diversity Genetic groups Germplasm mislabeling 



The authors would like to thank Land O’Lakes, Inc., International Development, for their collaborative efforts and partial financial support through the USAID-funded Cooperative Development Program (CDP). We also would like to thank MARS, Inc., for funding Trust Agreement #58-6631-6-123: Genetic Improvement of Theobroma cacao, and the USDA-ARS SHRS cacao program for their partial financial support. We would like to extend our appreciation to Drs. Belinda Martineau and Tomás Ayala-Silva for their constructive comments and suggestions to the manuscript.

Supplementary material

10722_2012_9860_MOESM1_ESM.docx (36 kb)
Supplementary material 1 (DOCX 36 kb)
10722_2012_9860_MOESM2_ESM.tif (105 kb)
Population structure and nine ancestry groups within the cacao (Theobroma cacao L.) germplasm collection from IDIAF Mata Larga research station, Dominican Republic, produced using Structure v2.3.3. Each individual vertical line represents a genotype. Admixed individuals are denoted with multiple colors representing the ancestry groups (see color key). Note: Lowercase letters (a, b, c, or d) indicate an accession had more than one multi-locus genotype (MLG); §misidentified genotypes; §§accessions for which no reference genetic profiles were available; §§§SYN GROUPs including members without reference genotypes, true-to-type, or misidentified members; accession names with no symbol are true-to-type. (TIFF 105 kb)
10722_2012_9860_MOESM3_ESM.tif (96 kb)
Population structure and seven ancestry groups within the Dominican Republic cacao (Theobroma cacao L.) local farmer selections (LFS) produced using Structure v2.3.3. Each individual vertical line represents a genotype. Admixed individuals are denoted with multiple colors representing the ancestry groups (see color key). Note: Lowercase letters (a or b) means accession had more than one multi-locus genotype (MLG). (TIFF 96 kb)


  1. Aikpokpodion PO, Motamayor JC, Adetimirin VO, Adu-Ampomah Y, Ingelbrecht I, Eskes AB, Schnell RJ, Kolesnikova-Allen M (2009) Genetic assessment of sub-samples of cacao, Theobroma cacao L. collections in West Africa using simple sequence repeats marker. Tree Genet Genomes 5:699–711CrossRefGoogle Scholar
  2. Aime MC, Phillips-Mora W (2005) The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia 97:1012–1022PubMedCrossRefGoogle Scholar
  3. Alverson WS, Whitlock BA, Nyffeler R, Bayer C, Baum DA (1999) Phylogeny of the core Malvales: evidence from ndhF sequence data. Am J Bot 86:1474–1486PubMedCrossRefGoogle Scholar
  4. Argout X, Salse J, Aury JM et al (2010) The genome of Theobroma cacao. Nat Genet 43:101–108PubMedCrossRefGoogle Scholar
  5. Bartley BGD (2005) The genetic diversity of cacao and its utilization. CABI Publishing, WallingfordCrossRefGoogle Scholar
  6. Batista L (1984) Progreso en 10 años de investigacion en el mejoramiento genetic del cacao en República Dominicana. In: Proceedings international cocoa research conference, Lomé, TogoGoogle Scholar
  7. Batista L (2009) Guía técnica del cultivo de cacao en República Dominicana. Ministerio de Agricultura, Santo DomingoGoogle Scholar
  8. Bekele F, Butler DR (2000) Proposed list of cocoa descriptors for characterization. In: Eskes AB, Engels JMM, Lass RA (eds) Working procedures for cocoa germplasm evaluation and selection. Proceedings of the CFC/ICCO/IPGRI project workshop, Montpellier, France, 1–6 Feb 1998. IPGRI, Montpellier, pp 41–48Google Scholar
  9. Borrone JW, Meerow AW, Kuhn DN, Whitlock BA, Schnell RJ (2007) The potential of the WRKY gene family for phylogenetic reconstruction: an example from the Malvaceae. Mol Phylogenet Evol 44:1141–1154PubMedCrossRefGoogle Scholar
  10. Brown JS, Sautter RT, Olano CT, Borrone JW, Kuhn DN, Motamayor JC, Schnell RJ (2008) A composite linkage map from three crosses between commercial clones of cacao, Theobroma cacao L. Trop Plant Biol 1:120–130CrossRefGoogle Scholar
  11. Cheesman EE (1944) Notes on the nomenclature, classification and possible relationship of cocoa populations. Trop Agric 21:144–159Google Scholar
  12. Coe SD, Coe MD (1996) The true history of chocolate. Thames and Hudson Ltd., LondonGoogle Scholar
  13. Cope FW (1984) Cacao Theobroma cacao (Sterculiaceae). In: Simmonds NW (ed) Evolution of crops plants. Longman, London, pp 285–289Google Scholar
  14. Crouzillat D, Lerceteau E, Petiard V, Morera J, Rodriguez H, Walker D, Phillips W, Ronning C, Schnell R, Osei J, Fritz P (1996) Theobroma cacao L.: a genetic linkage map and quantitative trait loci analysis. Theor Appl Genet 93:205–214CrossRefGoogle Scholar
  15. Cuatrecasas J (1964) Cacao and its allies. A taxonomic revision of the genus Theobroma. Contributions from the United States Nacional Herbarium, vol 35. Smithsonian Institution Press, Washington, pp 375–614Google Scholar
  16. Dantas LG, Guerra M (2010) Chromatin differentiation between Theobroma cacao L. and T. grandiflorum Schum. Genet Mol Biol 33:94–98PubMedCrossRefGoogle Scholar
  17. Deheuvels O, Decazy B, Perez R, Roche G, Amores F (2004) The first Ecuadorean ‘Nacional’ cocoa collection based on organoleptic characteristics. Trop Sci 44:23–27CrossRefGoogle Scholar
  18. Efombagn IBM, Motamayor JC, Sounigo O, Eskes AB, Nyassé S, Cilas C, Schnell R, Manzanares-Dauleux MJ, Kolesnikova-Allen M (2008) Genetic diversity and structure of farm and GenBank accessions of cacao (Theobroma cacao L.) in Cameroon revealed by microsatellite markers. Tree Genet Genomes 4:821–831CrossRefGoogle Scholar
  19. Elwers S, Zambrano A, Rohsius C, Lieberei R (2009) Differences between the content of phenolic compounds in Criollo, Forastero and Trinitario cocoa seed (Theobroma cacao L.). Eur Food Technol 229:937–948CrossRefGoogle Scholar
  20. Engels JMM (1983) A systematic description of cacao clones. III. Relationships between clones, between characteristics and some consequences for the cacao breeding. Euphytica 32:719–733CrossRefGoogle Scholar
  21. Eskes A, Lanaud C (1997) Cocoa. In: Charrier A (ed) Tropical plant breeding. Montpellier, France, pp 78–105Google Scholar
  22. Estadísticas del Departamento de Cacao en República Dominicana (2010) Ministerio de Agricultura. Santo Domingo, República DominicanaGoogle Scholar
  23. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  24. Evett IW, Weir BS (1998) Interpreting DNA evidence: statistical genetics for forensic scientists. Sinauer, SunderlandGoogle Scholar
  25. FAOSTAT (2008) Verified 10 Jan 2011. FAO, Rome
  26. Henderson JS, Joyce RA, Hall GR, Hurst WJ, McGovern PE (2007) Chemical and archeological evidence for the earliest cacao beverages. Proc Natl Acad Sci USA 104:18937–18940PubMedCrossRefGoogle Scholar
  27. Hunter RJ (1990) The status of cocoa (Theobroma cacao, Sterculiaceae) in the western hemisphere. Econ Bot 44:425–439CrossRefGoogle Scholar
  28. Informe Anual del Departamento de Cacao (2006) Secretaría de Estado de Agricultura. Santo Domingo, República DominicanaGoogle Scholar
  29. Irish BM, Goenaga R, Zhang D, Schnell RJ, Brown JS (2010) Microsatellite fingerprint of the USDA-ARS Tropical Agriculture Research Station cacao (Theobroma cacao L.) germplasm collection. Crop Sci 50:656–667CrossRefGoogle Scholar
  30. Iwaro AD, Bekele FL, Butler DR (2003) Evaluation and utilization of cacao (Theobroma cacao L.) germplasm at the International Cocoa Genebank, Trinidad. Euphytica 130:207–221CrossRefGoogle Scholar
  31. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806PubMedCrossRefGoogle Scholar
  32. Johnson ES, Bekele FL, Brown SJ, Song Q, Zhang D, Meinhardt LW, Schnell RJ (2009) Population structure and genetic diversity of the Trinitario cacao (Theobroma cacao L.) from Trinidad and Tobago. Crop Sci 49:564–572CrossRefGoogle Scholar
  33. Kaeuffer R, Reale D, Coltman DW, Pontier D (2007) Detecting population structure using STRUCTURE software: effect of background linkage disequilibrium. Heredity 99:374–380PubMedCrossRefGoogle Scholar
  34. Kalinowski ST (2010) The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity 2010:1–8Google Scholar
  35. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106PubMedCrossRefGoogle Scholar
  36. Kloosterman AD, Budowle B, Daselaar P (1993) PCR-amplifications and detection of the human D1S80 locus. Int J Leg Med 105:257–264CrossRefGoogle Scholar
  37. Knight R, Rogers HH (1953) Sterility in Theobroma cacao L. Nature 172:164PubMedCrossRefGoogle Scholar
  38. Knight R, Rogers HH (1955) Incompatibility in Theobroma cacao. Heredity 9:69–77CrossRefGoogle Scholar
  39. Lanaud C, Hammon CP, Duperray C (1992) Estimation of the nuclear DNA content of Theobroma cacao by flow cytometry. Cafe Cacao 36:3–8Google Scholar
  40. Lanaud C, Risterucci AM, Pieretti I, Falque M, Bouet A (1999) Isolation and characterization of microsatellites in Theobroma cacao L. Mol Ecol 8:2141–2143PubMedCrossRefGoogle Scholar
  41. Lerceteau E, Quiroz J, Soria J, Flipo S, Pétiard V, Crouzilat D (1997) Genetic differentiations among Ecuadorian Theobroma cacao L. accessions using DNA and morphological analyses. Euphitica 95:77–87CrossRefGoogle Scholar
  42. Loor RG, Risterucci AM, Courtois B, Fouet O, Jeanneau M, Rosenquist E, Amores F, Vasco A, Medina M, Lanaud C (2009) Tracing the native ancestors of the modern Theobroma cacao L. population in Ecuador. Tree Genet Genome 5:421–433CrossRefGoogle Scholar
  43. Marshall TC, Slate J, Kruuk L, Pemberton JJ (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655PubMedCrossRefGoogle Scholar
  44. Motamayor JC, Risterucci AM, Lopez PA, Ortiz CF, Moreno A, Lanaud C (2002) Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity 89:380–386PubMedCrossRefGoogle Scholar
  45. Motamayor JC, Risterucci AM, Heath M, Lanaud C (2003) Cacao domestication II: progenitor germplasm of Trinitario cacao cultivar. Heredity 91:322–330PubMedCrossRefGoogle Scholar
  46. Motamayor JC, Lachenaud P, e Mota JW, Loor R, Kuhn DN, Brown JS, Schnell RJ (2008) Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS One 3:10CrossRefGoogle Scholar
  47. Motilal LA, Butler D (2003) Verification of identies in global cacao germplasm collections. Genet Resour Crop Evol 50:799–807CrossRefGoogle Scholar
  48. Motilal LA, Zhang D, Umaharan P, Mischke S, Mooleedhar V, Meinhardt LW (2010) The relic Criollo cacao in Belize—genetic diversity and relationship with Trinitario and other cacao clones held in the International Cacao Genebank, Trinidad. Plant Genet Resour Charact Util 8:106–115CrossRefGoogle Scholar
  49. Motilal LA, Zhang D, Umaharan P, Mischke S, Pinney S, Meinhardt LW (2011) Microsatellite fingerprinting in the International Cocoa Genebank, Trinidad: accession and plot homogeneity information for germplasm management. Plant Genet Resour Charact Util 9:430–438CrossRefGoogle Scholar
  50. Opoku SY, Bhattacharjee R, Kolesnikova-Allen M, Motamayor JC, Schnell R, Ingelbrecht I, Enu-Kwesi L, Adu-Ampomah Y (2007) Genetic diversity in Cocoa (Theobroma cacao L.) germplasm collection from Ghana. J Crop Improv 20:73–87CrossRefGoogle Scholar
  51. Phillips-Mora W, Castillo J, Krauss U, Rodriguez E, Wilkinson MJ (2005) Evaluation of cacao (Theobroma cacao) clones against seven Colombian isolates of Moniliophthora roreri from four pathogen genetic groups. Plant Pathol 54:483–490CrossRefGoogle Scholar
  52. Plan Operativo Anual (2007) Instituto Dominicano de Investigaciones Agrícolas y Forestales (IDIAF). Programa Nacional de Cacao, Santo DomingoGoogle Scholar
  53. Pound FJ (1945) A note on the cacao population of South America. In: Report and proceedings of the cacao research conference held at colonial office. The Colonial Office, His Majesty’s Stationery Office, London, May–June 1945, pp 131–133Google Scholar
  54. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breeding 2:225–238CrossRefGoogle Scholar
  55. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  56. Pritchard JK, Wen X, Falush D (2010) Documentation for STRUCTURE software: version 2.3. Verified 15 Feb 2011
  57. Rice RA, Greenberg R (2000) Cacao cultivation and the conservation of biological diversity. Ambio 29:3Google Scholar
  58. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science 298:2381–2385PubMedCrossRefGoogle Scholar
  59. Royaert S, Phillips-Mora W, Arciniegas Leal AM, Carriaga K, Brown JS, Kuhn DN, Schnell RJ, Motamayor JC (2011) Identification of marker-trait associations for self-compatibility in a segregating mapping population of Theobroma cacao L. Tree Genet Genomes 7:1159–1168CrossRefGoogle Scholar
  60. Rusconi M, Conti A (2010) Theobroma cacao L., the food of the Gods: a scientific approach beyond myths and claims. Pharm Res 61:5–13CrossRefGoogle Scholar
  61. SAS Institute Inc. (2010) Version 9.2. SAS Institute Inc, CaryGoogle Scholar
  62. Saunders JA, Mischke S, Leamy EA, Hemeida AA (2004) Selection of international molecular standards for DNA fingerprinting of Theobroma cacao L. Theor Appl Genet 110:41–44PubMedCrossRefGoogle Scholar
  63. Schnell RJ, Olano CT, Brown JS, Meerow AW, Cervantes-Martinez C, Nagami C, Motamayor JC (2005) Retrospective determination of the parental population of superior cacao (Theobroma cacao L.) seedlings and association of microsatellites alleles with productivity. J Am Soc Hortic Sci 130:181–190Google Scholar
  64. Schnell RJ, Kuhn DN, Brown JS, Olano CT, Phillips-Mora W, Amores FM, Motamayor JC (2007) Development of a marker assisted selection program for cacao. Phytopathology 97:1664–1669PubMedCrossRefGoogle Scholar
  65. Sereno ML, Albuquerque PSB, Vencovsky R, Figueira A (2006) Genetic diversity and natural population structure of cacao (Theobroma cacao L.) from a the Brazilian Amazon evaluated by microsatellite markers. Conserv Genet 7:13–24CrossRefGoogle Scholar
  66. Sofreco, Ecocaribe (2001) Proyecto piloto de mejoramiento de la producción y comercialización del cacao en República Dominicana. Secretariado Técnico de la Presidencia, República DominicanaGoogle Scholar
  67. Steinberg MK (2002) The globalization of a ceremonial tree: the case of cacao (Theobroma cacao) among the Mopan Maya. Ecol Bot 56:58–65CrossRefGoogle Scholar
  68. Toxopeus H (1985) Botany, types and populations. In: Wood GAR, Lass RA (eds) Cocoa, 4th edn. Longman Group Ltd, London, pp 11–37Google Scholar
  69. Trognitz B, Scheldeman X, Hansel-Hohl K, Kuant A, Grebe H, Hermann M (2011) Genetic population structure of cacao plantings within a young production area in Nicaragua. PLoS One 6:1CrossRefGoogle Scholar
  70. Turnbull CJ, Hadley P (2011) International Cocoa Germplasm Database (ICGD). [Online Database]. NYSE Liffe/CRA Ltd./University of Reading, UK. Available: Verified 21 Apr 2011
  71. Turnbull CJ, Butler DR, Cryer NC, Zhang D, Lanaud C, Daymond AJ, Ford CS, Wilkinson MJ, Hadley P (2004) Tackling mislabeling in cocoa germplasm collections. INGENIC Newsl 9:8–11Google Scholar
  72. Ventura-López M, González A, Batista L (2006) Selección de arboles de cacao (Theobroma cacao L.) nativo y híbrido de buen rendimiento y con indicadores de calidad. In: Eskes AB, Efron Y, End MJ, Bekele F (eds) Proceeding of the international workshop on cocoa breeding for farmer’s needs. INGENIC, San Jose, Costa Rica, 15–17 Oct 2006Google Scholar
  73. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256PubMedCrossRefGoogle Scholar
  74. Zhang D, Arevalo-Gardini E, Mischke S, Zúñiga-Cernades L, Barreto-Chavez A, Adriazola del Aguila J (2006a) Genetic diversity and structure of managed and semi-natural populations of cocao (Theobroma cacao) in the Huallaga and Ucayali valleys of Peru. Ann Bot 98:647–655PubMedCrossRefGoogle Scholar
  75. Zhang D, Mischke S, Goenaga R, Hemeida AA, Saunders JA (2006b) Accuracy and reliability of high-throughput microsatellite genotyping for cacao clone identification. Crop Sci 46:2084–2092CrossRefGoogle Scholar
  76. Zhang D, Boccara M, Lambert M, Butler DR, Umaharan P, Mischke S, Meinhardt L (2008) Microsatellite variation and population structure in the “Refractario” cacao of Ecuador. Conserv Genet 9:327–337CrossRefGoogle Scholar
  77. Zhang D, Mischke S, Johnson ES, Phillips-Mora W, Meinhardt L (2009) Molecular characterization of an international cacao collection using microsatellite markers. Tree Genet Genomes 5:1–10CrossRefGoogle Scholar
  78. Zhang D, Martinez WJ, Johnson WS, Somarriba E, Phillips-Mora W, Astorga C, Mischke S, Meinhardt LW (2012) Genetic diversity and spatial structure in a new distinct Theobroma cacao L. population in Bolivia. Genet Resour Crop Evol 59:239–252CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2012

Authors and Affiliations

  • Edward J. Boza
    • 1
  • Brian M. Irish
    • 2
  • Alan W. Meerow
    • 1
  • Cecile L. Tondo
    • 1
  • Orlando A. Rodríguez
    • 3
  • Marisol Ventura-López
    • 3
  • Jaime A. Gómez
    • 4
  • J. Michael Moore
    • 1
  • Dapeng Zhang
    • 5
  • Juan Carlos Motamayor
    • 1
    • 6
  • Raymond J. Schnell
    • 1
    • 7
  1. 1.C/O USDA-ARS Subtropical Horticulture Research StationMiamiUSA
  2. 2.USDA-ARS Tropical Agriculture Research StationMayagüezUSA
  3. 3.Instituto Dominicano de Investigaciones Agropecuarias y Forestales (IDIAF)San Francisco de MacorísDominican Republic
  4. 4.Confederación Nacional de Cacaocultores Dominicanos, Inc. (CONACADO)Santo DomingoDominican Republic
  5. 5.USDA-ARS Sustainable Perennial Crops LaboratoryBeltsvilleUSA
  6. 6.MARS, Inc.HackettstownUSA
  7. 7.MARS, Inc.ElizabethtownUSA

Personalised recommendations