Genetic Resources and Crop Evolution

, Volume 60, Issue 2, pp 543–568 | Cite as

Nuclear and chloroplast microsatellite markers to assess genetic diversity and evolution in hazelnut species, hybrids and cultivars

  • Nahla Bassil
  • Paolo Boccacci
  • Roberto Botta
  • Joseph Postman
  • Shawn Mehlenbacher
Research Article


The US Department of Agriculture, Agricultural Research Service, National Clonal Germplasm Repository in Corvallis, Oregon, preserves more than 800 accessions of hazelnut (Corylus), including C. avellana cultivars and representatives of 10 other recognized shrub and tree species. Characterization and study of genetic diversity in this collection require cross-transferable markers, such as trinucleotide microsatellite or simple sequence repeat (SSR) markers and universal chloroplast SSR markers. We developed new SSR markers and evaluated 114 Corylus accessions representing 11 species and 44 interspecific hybrids. Eight of 23 SSRs generated easy-to-score alleles in all species and seven were highly polymorphic. For those seven, the average heterozygosity was moderate at 0.49, and mean allele number, genetic diversity and polymorphism information index were high at 11.71, 0.79 and 0.76, respectively. The three most polymorphic SSRs were CaC-C008, CaC-C040 and CaC-C118. Neighbor-joining (NJ) clustering and structure analysis agreed with classical taxonomic analysis and supported inclusion of C. maxima within the large polymorphic species, C. avellana. Analysis also indicated that C. californica is a distinct species rather than a botanical variety of C. cornuta. Six universal cpSSRs were polymorphic in Corylus and generated 21 distinct chlorotypes with an average of 3 alleles per locus. Diversity at these cpSSRs was high and ranged from 0.33 to 0.64, with an average of 0.54. Incongruence in NJ topologies between the nuclear and chloroplast markers could be attributed to chloroplast capture related to hybridization during the ancestral diversification of the genus, or to homoplasy. The phylogeographical relationships among the 21 chlorotypes in the 11 Corylus species support Asia as a refugium where several hazelnut lineages survived during glaciation and from which they continued to evolve after dispersal from Asia through the Mediterranean to Europe, and across the Atlantic and/or the Bering land bridge to North America.


Corylus Filbert Simple sequence repeat (SSR) markers Universal chloroplast SSRs 



We acknowledge Barbara Gilmore, Christine Neou-Anderson, and April Nyberg for technical assistance in microsatellite marker separation. Funding for this study was provided by the USDA-ARS CRIS 5358-21000-033-00D, a USDA-ARS National Plant Germplasm System Evaluation Grant, and by the Fondazione Cassa di Risparmio di Torino (Italy).

Supplementary material

10722_2012_9857_MOESM1_ESM.xlsx (25 kb)
Supplementary Table 1. Amplification and polymorphism of twenty-three SSRs developed from a trinucleotide-enriched library (GAA) of hazelnut. Amplification success and polymorphism are indicated with a ‘+’ while failure and monomorphism are indicated by ‘-‘. ‘D’ refers to discarded primer pairs for that species due to poor amplification in tested representatives of that species. Also listed are the SSR motif, primer sequences, expected size, optimum annealing temperature, linkage group location, and citation where available. (XLSX 25 kb)


  1. Arroyo-García R, Ruiz-García L, Bolling L, Ocete R, López MA, Arnold C, Ergul A, Söylemezoğlu G, Uzun HI, Cabello F, Ibáñez J, Aradhya MK, Atanassov A, Atanassov I, Balint S, Cenis JL, Costantini L, Gorislavets S, Grando MS, Klein BY, McGovern PE, Merdinoglu D, Pejic I, Pelsy F, Primikirios N, Risovannaya V, Roubelakis-Angelakis KA, Snoussi H, Sotiri P, Tamhankar S, This P, Troshin L, Malpica JM, Lefort F, Martínez-Zapater JM (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15:3707–3714PubMedCrossRefGoogle Scholar
  2. Bandelt HJ, Foster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedCrossRefGoogle Scholar
  3. Bassil NV, Botta R, Mehlenbacher SA (2005a) Microsatellite markers in hazelnut: isolation, characterization and cross-species amplification. J Am Soc Hort Sci 130:543–549Google Scholar
  4. Bassil NV, Botta R, Mehlenbacher SA (2005b) Additional microsatellite markers of the European hazelnut. Acta Hort 686:105–110Google Scholar
  5. Bassil NV, Postman J, Hummer K, Botu M, Sezer A (2009) SSR fingerprinting panel verifies identities of clones in backup hazelnut collection at USDA genebank. Acta Hort 845:95–102Google Scholar
  6. Boccacci P, Botta R (2009) Investigating the origin of hazelnut (Corylus avellana L.) cultivars using chloroplast microsatellites. Genet Resour Crop Evol 56:851–859CrossRefGoogle Scholar
  7. Boccacci P, Botta R (2010) Microsatellite variability and genetic structure in hazelnut (Corylus avellana L.) cultivars from different growing regions. Sci Hortic 124:128–133CrossRefGoogle Scholar
  8. Boccacci P, Akkak A, Bassil NV, Mehlenbacher SA, Botta R (2005) Characterization and evaluation of microsatellite loci in european hazelnut (Corylus avellana L.) and their transferability to other Corylus species. Mol Ecol Notes 5:934–937CrossRefGoogle Scholar
  9. Boccacci P, Akkak A, Botta R (2006) DNA-typing and genetic relationships among European hazelnut (Corylus avellana L.) cultivars using microsatellite markers. Genome 49:598–611PubMedCrossRefGoogle Scholar
  10. Boccacci P, Botta R, Rovira M (2008) Genetic diversity of hazelnut (Corylus avellana L.) germplasm in northeastern Spain. HortSci 43:667–672Google Scholar
  11. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  12. Botta R, Akkak A, Boccacci P (2005) DNA-typing of hazelnut: a universal methodology for describing cultivars and evaluating genetic relatedness. Acta Hort 686:117–124Google Scholar
  13. Chen ZD, Manchester SR, Sun HY (1999) Phylogeny and evolution of the Betulaceae as inferred from DNA sequences, morphology, and paleobotany. Am J Bot 86:1168–1181PubMedCrossRefGoogle Scholar
  14. Crane PR (1989) Early fossil history and evolution of the Betulaceae. In: Crane PR, Blackmore S (eds) Evolution, systematics and fossil history of the Hamamelidae, vol 2, ‘Higher’ Hamame- lidae. Clarendon Press, Oxford, pp 87–116Google Scholar
  15. Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, LondonGoogle Scholar
  16. Cuenca A, Escalante AE, Piñero D (2003) Long-distance colonization, isolation by distance, and historical demography in a relictual Mexican pinyon pine (Pinus nelsonii Shaw) as revealed by paternally inherited genetic markers (cpSSRs) M. Mol Ecol 12:2087–2097PubMedCrossRefGoogle Scholar
  17. De Candolle A (1864) Corylus. In: Prodromus systemnatis naturalis regni vegetabilis, vol 16, part 2. Treuttel & Wurtz, Paris, pp 128–133Google Scholar
  18. Erdoğan V, Mehlenbacher SA (2000a) Phylogenetic relationships of Corylus species (Betulaceae) based on nuclear ribosomal DNA ITS region and chloroplast matK gene sequences. Syst Bot 25:727CrossRefGoogle Scholar
  19. Erdoğan V, Mehlenbacher SA (2000b) Interspecific hybridization in hazelnut. J Am Soc Hort Sci 125(4):489–497Google Scholar
  20. Forest F, Bruneau A (2000) Phylogenetic analysis, organization and molecular evolution of the nontranscribed spacer of 5S ribosomal RNA genes in Corylus (Betulaceae). Int J Plant Sci 161:793–806CrossRefGoogle Scholar
  21. Forest F, Savolainen V, Chase MW, Lupia R, Bruneau A, Crane PR (2005) Teasing apart molecular- versus fossil-based error estimates when dating phylogenetic trees: a case study in the Birch family (Betulaceae). Syst Bot 30:118–133CrossRefGoogle Scholar
  22. Gastier JM, Pulido JC, Sunden S, Brody T, Buetow KH, Murray JC, Weber JL, Hudson TJ, Sheffield VC, Duyk GM (1995) Survey of trinucleotide repeats in the human genome: assessment of their utility as genetic markers. Hum Mol Genet 4:1829–1836PubMedCrossRefGoogle Scholar
  23. Ghanbari A, Akkak A, Boccacci P, Talaie A, Vezvaie A, Botta A (2005) Characterization of hazelnut (Corylus avellana L.) cultivars using microsatellite markers. Acta Hort 686:111–115Google Scholar
  24. Gökirmak T, Mehlenbacher SA, Bassil NV (2009) Characterization of European hazelnut (Corylus avellana) cultivars using SSR markers. Genet Resour Crop Evol 56:147–172CrossRefGoogle Scholar
  25. Gürcan K, Mehlenbacher SA (2010a) Transferability of microsatellite markers in the Betulaceae. J Am Soc Hort Sci 135(2):159–173Google Scholar
  26. Gürcan K, Mehlenbacher SA (2010b) Development of microsatellite marker loci for European hazelnut (Corylus avellana L.) from ISSR fragments. Mol Breed 26:551–559CrossRefGoogle Scholar
  27. Gürcan K, Mehlenbacher SA, Bassil NV, Boccacci P, Akkak A, Botta R (2010a) New microsatellite markers for Corylus avellana from enriched libraries. Tree Genet Gen 6:513–531CrossRefGoogle Scholar
  28. Gürcan K, Mehlenbacher SA, Erdoğan V (2010b) Genetic diversity in hazelnut cultivars from Black Sea countries assessed using SSR markers. Plant Breed 129:422–434. doi: 10.1111/j.1439-0523.2009.01753.x Google Scholar
  29. Ishii T, McCouch SR (2000) Microsatellites and microsynteny in the chloroplast genomes of Oryza and eight other Graminae species. Theor Appl Genet 100:1257–1266CrossRefGoogle Scholar
  30. Ishii T, Mori N, Ogihara Y (2001) Evaluation of allelic diversity at chloroplast microsatellite loci among common wheat and its ancestral species. Theor Appl Genet 103:896–904CrossRefGoogle Scholar
  31. Kasapligil B (1972) A bibliography on Corylus (Betulaceae) with annotations. Annu Rpt Northern Nut Growers Assn 63:107–162Google Scholar
  32. Kutil BL, Williams CJ (2001) Triplet repeat microsatellites shared among hard and soft pines. J Heredity 92:327–332CrossRefGoogle Scholar
  33. Li PC, Cheng SX (1979) Betulaceae. In: Kuang K-Z, Li P-C (eds) Flora republicae popularis sinicae, vol 21. Science Press, Beijing, pp 44–137 (In Chinese)Google Scholar
  34. Liang WJ, Zhang YM (1988) Investigation and study of filbert resources in China. In: Proceedings of the international symposium on horticultural germplasm, Cultivated and Wild. Beijing, China. 5–9 Sept. 1988Google Scholar
  35. Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland K (2004) Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet 109:361–369PubMedCrossRefGoogle Scholar
  36. Liu K, Muse SV (2005) Powermarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129PubMedCrossRefGoogle Scholar
  37. Malusà E (1994) Interspecific relationships among Corylus species. Acta Hort 51:335–340Google Scholar
  38. Mehlenbacher SA (1991) Hazelnuts (Corylus). Genetic resources of temperate fruit and nut crops. Acta Hort 290:791–836Google Scholar
  39. Mehlenbacher SA (2009) Genetic resources for hazelnut: state of the art and future perspectives. Acta Hort 845:33–38Google Scholar
  40. Mehlenbacher SA, Brown RN, Nouhra ER, Gökirmak T, Bassil NV, Kubisiak TL (2006) A genetic linkage map for hazelnut (Corylus avellana L.) based on RAPD and SSR markers. Genome 49:122–133PubMedGoogle Scholar
  41. Minch E (1997) MICROSAT version 1.5b. Stanford University Medical Center, Stanford, CA. Accessed 02 January 2012
  42. Molnar TJ, Goffreda JC, Funk CR (2005) Developing hazelnuts for the eastern United States. Acta Hort 68:609–617Google Scholar
  43. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200PubMedCrossRefGoogle Scholar
  44. Navascués M, Emerson BC (2005) Chloroplast microsatellites: measures of genetic diversity and the effect of homoplasy. Mol Ecol 14:1333–1341PubMedCrossRefGoogle Scholar
  45. Nei M (1987) Molecular evolutionay genetics. Columbia University Press, New YorkGoogle Scholar
  46. Palmé AE, Vendramin GG (2002) Chloroplast DNA variation, postglacial recolonization and hybridization in hazel, Corylus avellana. Mol Ecol 11:1769–1779PubMedCrossRefGoogle Scholar
  47. Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Martín JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565PubMedCrossRefGoogle Scholar
  48. Pigg KB, Manchester SR, Wehr WC (2003) Corylus, Carpinus, and Palaeocarpinus (Betulaceae) from the middle Eocene Klondike Mountain and Allenby Formations of northwestern North America. Int J Plant Sci 164:807–822CrossRefGoogle Scholar
  49. Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  50. Provan J, Powell W, Hollingsworth PH (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147PubMedCrossRefGoogle Scholar
  51. Rajora OP, Rahman MH, Dayanandan S, Mosseler A (2001) Isolation, characterization, inheritance and linkage of microsatellite DNA markers in white spruce (Picea glauca) and their usefulness in other spruce species. Mol Gen Genet 264:871–882PubMedCrossRefGoogle Scholar
  52. Rovira M (1997) Genetic variability among hazelnut (C. avellana L.) cultivars. Acta Hort 445:45–50Google Scholar
  53. Sathuvalli SR, Mehlenbacher SA (2011) Characterization of American hazelnut (Corylus americana) accessions and Corylus americana × Corylus avellana hybrids using microsatellite markers. Genet Resour Crop Evol. doi: 10.1007/s10722-011-9743-0 Google Scholar
  54. Schneider C (1916) Betulaceae. In: ed., Sargent CS (ed) Plantae wilsonianae: an enumeration of the woody plants collected in western China for the Arnold Arboretum of Harvard University during the years 1907, 1908, and 1910, vol. 2. Publications of the Arnold Arboretum, no. 4, pp 423–508Google Scholar
  55. Scotti I, Magni F, Fink R, Powell W, Binnelli G, Hedley PE (2000) Microsatellite repeats are not randomly distributed within Norway spruce (Picea abies L.) expressed sequences. Genome 43:41–46PubMedGoogle Scholar
  56. Sheffield VC, Weber JL, Buetow KH, Murray JC, Even DA, Wiles K, Gastier JM, Pulido JC, Yandava C, Sunden SL et al (1995) A collection of tri- and tetra-nucleotide repeat markers used to generate high quality, high resolution human genome-wide linkage maps. Hum Mol Genet 4:1837–1844PubMedCrossRefGoogle Scholar
  57. Shepherd M, Cross M, Maguire TL, Dieters MJ, Williams CG, Henry RJ (2002) Transpecific microsatellites for hard pines. Theor Appl Genet 104:819–827PubMedCrossRefGoogle Scholar
  58. Slate GL (1947) Some results with filbert breeding at Geneva, New York. Annu Rep North Nut Grow Assoc 38:94–100Google Scholar
  59. Stàgel A, Portis E, Toppino L, Rotino GL, Lanteri S (2008) Gene-based microsatellite development for mapping and phylogeny studies in eggplant. BMC Genomics 9:357–370PubMedCrossRefGoogle Scholar
  60. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi: 10.1093/molbev/msr121 Google Scholar
  61. Terrab A, Paun O, Talavera S, Tremetsberger K, Arista MF, Stuessy TF (2006) Genetic diversity and population structure in natural populations of Moroccan Atlas cedar (Cedrus atlantica, Pinaceae) determined with cpSSR markers. Am J Bot 93(9):1274–1280PubMedCrossRefGoogle Scholar
  62. Testolin R, Cipriani G (2010) Molecular markers for germplasm identification and characterization. Acta Hort 859:59–72Google Scholar
  63. The Plant List (2010) Version 1. Published on the Internet; Accessed April 23, 2012
  64. Thompson MM, Lagerstedt HB, Mehlenbacher SA (1996) Hazelnuts. In: Janick J, Moore JN (eds) Fruit breeding: nuts, vol 3. Wiley, New York, pp 125–184Google Scholar
  65. Tozaki T, Inoue S, Mashima S, Ohta M, Miura N, Tomita M (2000) Sequence analysis of trinucleotide repeat microsatellites from an enrichment library of the equine genome. Genome 43:354–365PubMedCrossRefGoogle Scholar
  66. Wang Z, Weber JL, Zhong G, Tanksley SD (1994) Survey of plant short tandem DNA repeats. Theor Appl Genet 88:1–6Google Scholar
  67. Weising K, Gardner R (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19PubMedCrossRefGoogle Scholar
  68. Wendel JF, Doyle JJ (1998) Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis D, Soltis P, Doyle J (eds) Molecular systematics of plants, 2nd edn. Chapman & Hall, New YorkGoogle Scholar
  69. Whitcher IN, Wen J (2001) Phylogeny and biogeography of Corylus (Betulaceae): inference from ITS sequences. Syst Bot 26:283–298Google Scholar
  70. Yoo K-O, Wen J (2002) Phylogeny and biogeography of Carpinus and subfamily Coryloideae (Betulaceae). Int J Plant Sci 163:641–650CrossRefGoogle Scholar
  71. Yoo K-O, Wen J (2007) Phylogeny of Carpinus and subfamily Coryloideae (Betulaceae) based on chloroplast and nuclear ribosomal sequence data. Plant Syst Evol 267:25–35CrossRefGoogle Scholar
  72. Young ET, Sloan JS, Van Riper K (2000) Trinucleotide repeats are clustered in regulatory genes in Saccaromyces cerevisae. Genetics 154:1053–1068PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2012

Authors and Affiliations

  • Nahla Bassil
    • 1
  • Paolo Boccacci
    • 2
  • Roberto Botta
    • 3
  • Joseph Postman
    • 1
  • Shawn Mehlenbacher
    • 4
  1. 1.United States Department of Agriculture (USDA)Agricultural Research Service (ARS), National Clonal Germplasm Repository (NCGR)CorvallisUSA
  2. 2.Plant Virology Institute, National Research Council (IVV-CNR), UOS of GrugliascoGrugliascoItaly
  3. 3.Dipartimento di Colture ArboreeUniversità degli Studi di TorinoGrugliascoItaly
  4. 4.Department of HorticultureOregon State UniversityCorvallisUSA

Personalised recommendations