Genetic Resources and Crop Evolution

, Volume 59, Issue 6, pp 1223–1254 | Cite as

Problems, progress and future prospects of improvement of Commiphora wightii (Arn.) Bhandari, an endangered herbal magic, through modern biotechnological tools: a review

  • Alpana Kulhari
  • Arun Sheorayan
  • Sanjay Kalia
  • Ashok Chaudhury
  • Rajwant K. Kalia
Notes on Neglected and Underutilized Crops


Commiphora wightii (Arn.) Bhandari syn. C. mukul Engl. (Burseraceae) is an economically and pharmacologically important slow growing, dioecious, balsamiferous woody, multipurpose shrub heading towards extinction. Commonly known as “Guggul” due to the presence of steroidal compound guggulsterone in the oleo-gum resin, it has been used in treating various ailments and disorders since ancient times (2000 B.C.). Evaluation and confirmation of hypolipidemic effects of guggul based on Ayurvedic text in 1960s provided a new insight into its pharmacological applications. Two bioactive isomers of guggulsterone, E and Z, are responsible for lipid- and cholesterol-lowering activities. Recently, it has been shown to have anti-cancerous activity also. It is found in the dry regions of Indian subcontinent, namely India, Pakistan and Bangladesh. Ruthless and unscientific harvesting of oleo-gum resin from the wild, by local populations, for economic benefits with negligible conservation efforts has made this species endangered and has led to its inclusion in Red Data Book of IUCN. Although this plant has many excellent traits, adequate attention has not been focused on its conservation and improvement. Conventional propagation methods i.e., seeds, cuttings and air layering are in place but have many limitations. Therefore, application of modern biotechnological tools needs to be standardized for harnessing maximum benefits from this pharmaceutically important plant. An efficient regeneration system needs to be in place for improvement of this genus through genetic transformation and production of useful metabolites in cell cultures. Studies are in progress for micropropagation through shoot multiplication and somatic embryogenesis, as well as for secondary metabolite (guggulsterone) production in callus cultures and bioreactors. No selected germplasm is available for C. wightii since it is a wild plant. Breeding programs have not yet been started due to lack of systematic cultivation and conservation programs. Moreover, little information has been gathered regarding the genetic variability in this species using RAPD and ISSR markers. No details are available about genetic makeup and QTL linkage maps. Investigations are in progress to search sex linked markers in this dioecious species. Research is also in progress to decipher the molecular mechanisms underlying various pharmacological actions of guggul. Since the approval of use of guggul as a food supplement by United States Food and Drug Administration in 1994, an exponential increase in research publications on various aspects of research on guggul have been published. Present communication summarizes the problems, progress made and suggests some future directions of research for this important endangered medicinal plant.


Commiphora wightii Endangered medicinal plant Guggulsterone Micropropagation Pharmaceutical applications Secondary metabolite production 



AK thankfully acknowledges the financial assistance provided by Department of Biotechnology, Government of India, New Delhi, under the project sanctioned vide order no. BT/PR10526/NDB/51/164/2008.


  1. Abegaz V, Dagne E, Bates C, Waterman PG (1989) Chemistry of the Burseaceae. Part 12. Monoterpene-rich resins from two Ethiopian species of Commiphora. Flav Frag J 4:99–101CrossRefGoogle Scholar
  2. Agrawal H, Kaul N, Paradkar AR, Mahadik KR (2004a) HPTLC method for guggulsterone II. Stress degradation studies on guggulsterone. J Pharmaceut Biomed Anal 36:23–31CrossRefGoogle Scholar
  3. Agrawal H, Kaul N, Paradkar AR, Mahadik KR (2004b) HPTLC method for guggulsterone II. Quantative determination of E- and Z-guggulsterone in herbal extract and pharmaceutical dosage form. J Pharmaceut Biomed Anal 36:33–41CrossRefGoogle Scholar
  4. Ahmed R, Ali Z, Wu Y, Kulkarni S, Avery MA, Choudhary MI, Khan IA (2011) Chemical characterization of a commercial Commiphora wightii resin sample and chemical profiling to assess for authenticity. Planta Med 77:945–950PubMedCrossRefGoogle Scholar
  5. Al-Howiriny T, Al-Sohaibani M, Al-Said M, Al-Yahya M, El-Tahir K, Rafatullah S (2005) Effect of Commiphora opobalsamum (L.) Engl. (Balessan) on experimental gastric ulcers and secretion in rats. J Ethnopharmacol 98:287–294PubMedCrossRefGoogle Scholar
  6. Aliyu R, Gatsing D, Umar HS (2002) Antimicrobial activity and phytochemical screening of the leaves of Commiphora africana. West African J Biol Sci 13:75–80Google Scholar
  7. Aliyu R, Adebayo AH, Gatsing D, Garba IH (2007) The effect of ethanolic leaf extract of Commiphora africana (Burseraceae) on rat liver and kidney functions. J Pharmacol Toxicol 2:373–379CrossRefGoogle Scholar
  8. Ashry KM, El-Sayed YS, Khamiss RM, El-Ashmawy IM (2009) Oxidative stress and immunotoxic effects of lead and their amelioration with myrrh (Commiphora molmol) emulsion. Food Chem Toxicol 48:236–241PubMedGoogle Scholar
  9. Asres K, Tei A, Moges G, Sporer F, Wink M (1998) Terpenoids composition of the wound—induced bark exudate of Commiphora tenuis from Ethiopia. Planta Med 64:437–475CrossRefGoogle Scholar
  10. Atal CK, Gupta OP, Afaq SH (1975) Commiphora mukul, source of guggul in Indian system of medicine. Eco Bot 29:208–218CrossRefGoogle Scholar
  11. Awadh Ali NA, Wurster M, Lindequist NAU, Wessjohann L (2008) Essential oil composition from oleo-gum resin of Soqotraen Commiphora kua. Rec Nat Prod 2:70–75Google Scholar
  12. Ayedoun MA, Moudachirou M, Tomi F, Casanova J (1997) Identification by 13C NMR and by GC/MS of the principal components of essential oils from Xylopia aethiopica (dunal) Richard and of Commiphora africana from Benin. J Soc Quest-Afr Chi 2:29–35Google Scholar
  13. Ayedoun MA, Sohounhloue DK, Menut C, Lamaty G, Molangui T, Casanova J, Tomi (1998) Aromatic plants of Tropical West Africa. VI. α-Oxobisabolene as main constituent of the leaf essential oil of Commiphora africana (A. Rich.) Engl. from Benin. J Essent Oil Res 10:105–107CrossRefGoogle Scholar
  14. Barsa AS (1994) Mechanism of plant growth and improved productivity: modern approaches. Marcel Dekker, New YorkGoogle Scholar
  15. Barve DM, Mehta AR (1987) Effect of cultural parameters on the growth of cell cultures and production of B-C-3 sterols and guggulsterone in C. wightii. In: Reddy G M (ed) Proceedings of symposium on plant cell econ imp plant. Hyderabad, IndiaGoogle Scholar
  16. Barve DM, Mehta AR (1993) Clonal propagation of mature elite trees of Commiphora wightii. Plant Cell, Tissue Organ Cult 35:237–244CrossRefGoogle Scholar
  17. Baser KHC, Demirci B, Dekebo A, Dagne E (2003) Essential oils of some Boswellia spp, Myrrh and Opoponax. Flav Frag J 18:153–156CrossRefGoogle Scholar
  18. Battu GR, Zeitlin IJ, Gray AI, Waterman PG (1999) Inhibitory actions on rat myeloperoxidease of molecules isolated from anti-inflammatory extracts of Commiphora kua. Brit J Pharmacol 128(Suppl):274Google Scholar
  19. Bhandari MM (1964) Notes on Indian desert plants- Four new names and combinations. Bull Bot Survey India 6:327–328Google Scholar
  20. Bhatt GK, Dixit RD (1974) A preliminary study on extensive cultivation of guggul at Mangliawas Hebal Farm, Ajmer, Rajasthan. J Res Ind Med 9:51–58Google Scholar
  21. Bhatt JR, Nair MNB, Mohanram HY (1989) Enhancement of oleogum resin production in Commiphora wightii by improved tapping technique. Curr Sci 58:349–354Google Scholar
  22. Birkett MA, Al Bassi S, Krober T, Chamberlain K, Hooper AM, Guerin PM, Pettersson J, Pickett JA, Slade R, Wadhams LJ (2008) Antiectoparasitic activity of the gum resin, gum haggar, from the East African plant, Commiphora holtziana. Phytochem 69:1710–1715CrossRefGoogle Scholar
  23. Bosely JA, Brown AL, Rogers JS (2004) Food composition for reducing insulin resistance. US Patent No. 6,737,442 B2Google Scholar
  24. Caputi M, Groeger AM, Esposito V, Dean C, De Luca A, Pacilio C, Muller MR, Giordano GG, Baldi F, Wolner E, Giordano A (1999) Prognostic role of cyclin D1 in lung cancer- Relationship to proliferating cell nuclear antigen. Am J Respir Cell Mol Biol 20:746–750PubMedGoogle Scholar
  25. Cardoso do Vale J (1962) Chemical study of the barks of Commiphora angolensis. Bol Escola Farm Univ Coimbra Ed Cient 22:113–128Google Scholar
  26. Carroll JF, Maradufu A, Warthen JD Jr (1989) An extract of Commiphora erythraea: a repellent and toxicant against ticks. Entomol Exp Appl 53:111–116CrossRefGoogle Scholar
  27. Cavanagh IS, Cole MD, Gibbons S, Gray AI, Provan GJ, Waterman PG (1993) Chemistry of the Burseraceae. Part 16. A novel sesquiterpene, 1, 2-epoxyfurano-10(15)-germacren-6-one, from the resin of Commiphora holtziana Engl. Flav Frag J 8:39–41CrossRefGoogle Scholar
  28. Chander R, Rizvi F, Khanna AK, Pratap R (2003) Cardioprotective activity of synthetic guggulsterone (E- and Z-isomers) in isoproterenol induced myocardial ischemia in rats: a comparative study. Indian J Clinical Biochem 18:71–79CrossRefGoogle Scholar
  29. Chaturvedi DD, Yadav BBL, Mishra KP (1987) Cultivation/extraction of gum-oleo-resin of Commiphora wightii (Arn.) Bhandari at Guggul Herbal Farm, Mangliawas—problems and prospects. Bull Med Ethno Res 8:166–170Google Scholar
  30. Cheon JH, Kim JS, Kim JM, Kim N, Jung HC, Song IS (2006) Plant sterol guggulsterone inhibits Nuclear Factor-kB signaling in intestinal epithelial cells by blocking IkB kinase and ameliorates acute murine colitis. Inflamm Bowel Dis 12:1152–1161PubMedCrossRefGoogle Scholar
  31. Ciuffarella L (1998) Palynological analyses of resinous materials from the roman mummy of Grottarossa, second century A.D.: a new hypothesis about the site of mummification. Rev Palaeobot Palynol 103:201–208CrossRefGoogle Scholar
  32. Claeson P, Andersson R, Samuelsson G (1991) T-cadinol– a pharmacologically active constituent of scented myrrh—introductory pharmacological characterization and high-field h-1-NMR and c-13- NMR data. Planta Med 57:352–356PubMedCrossRefGoogle Scholar
  33. Claeson P, Radstrom P, Skold O, Nilsson A, Hoglund S (1992) Bactericidal effect of the sesquiterpene T-cadinol on Staphylococcus aureus. Phytotherapy Res 6:94–98CrossRefGoogle Scholar
  34. Council of Europe (1981) Partial agreement in the Social and Public Health Field. Flavouring substances and natural sources of flavourings. List N2, no. 150. Editeur Maisonneuve, Strasbourg SAGoogle Scholar
  35. Craveiro A, Corsano S, Proietti G, Strappaghetti G (1983) Constituents of essential oil of Commiphora guidottii. Planta Med 48:97–98PubMedCrossRefGoogle Scholar
  36. Dalal KC (1989) Gemplasm collection and therapeutic, botanical, agriculture, chemical and clinical aspects of the endangered indigenous plant guggal (Commiphora wightii (Arn.) Bhand. A status cum review report, 8th workshop at Faizabad, Dec 1989Google Scholar
  37. Dass S, Ramawat KG (2009a) Calcium deprivation markedly enhances guggulsterone accumulation in cell cultures of Commiphora wightii. Curr Sci 96:1022–1024Google Scholar
  38. Dass S, Ramawat KG (2009b) Elicitation of guggulsterone production in cell cultures of Commiphora wightii by plant gums. Plant Cell Tiss Organ Cult 96:349–353CrossRefGoogle Scholar
  39. Dass S, Ramawat KG (2009c) Studies on somatic cell variability in Commiphora wightii (Arn.) Bhandari for guggulsterone production. Nat Prod Radiance 8:532–536Google Scholar
  40. Dass S, Tanwar YS, Ramawat KG (2008) Commiphora wightii callus cultures: a new source of Anthocynin. J Herbal Med Toxicol 2:17–20Google Scholar
  41. Dekebo A, Dagne E, Curry P, Gautun OR, Aasen AJ (2002) Dammarane triterpenes from the resins of Commiphora confusa. Bull Chem Soc Ethiopia 16:81–86Google Scholar
  42. Deng R (2007) Therapeutic effects of guggul and its constituent guggulsterone: cardiovascular benefits. Cardiovascular Drug Rev 25:375–390Google Scholar
  43. Dev S (1989) Chemistry of Commiphora mukul and development of a hypolipidemic drug. In: Rehman A (ed) Studies in natural product chemistry. Elsevier, Amsterdam, pp 695–719Google Scholar
  44. Dharmananda S (2003) Myrrh and Frankincense.
  45. Duwiejua M, Zeitlin IJ, Waterman PG, Chapman J, Mhango GJ, Provan GJ (1993) Anti-inflammatory activity of resins from some species of the plant family Burseraceae. Planta Med 59:12–16PubMedCrossRefGoogle Scholar
  46. El Ashry ES, Rashed N, Salama OM, Saleh A (2003) Components, therapeutic value and uses of myrrh. Pharmazie 58:163–168PubMedGoogle Scholar
  47. Evans WC (1989) Trease and evans pharmacognosy, 13th edn. Bailliere Tindall, London, pp 474–475Google Scholar
  48. FAO (1995) Flavours and fragrances of plant origin. Non-wood forest products 1. Food and Agricultural Organization (FAO), RomeGoogle Scholar
  49. Farah AY (1994) The milk of the Boswellia Forests. Frankincense production among the pastoral Somali. (Tia Riitta Hjort af Ornas ed.) EPOS, Uppsala University, Uppsala, Sweden, pp 1–142Google Scholar
  50. Fatope MO, Al-Burtomani SKS, Ochei JO, Abdulnour AO, Al- Kindy MZ, Takeda Y (2003) Muscanone: a 3-O-(1′’,8′’14′’-trimet hylhexadecanyl)naringenin from Commiphora wightii. Phytochem 62:1251–1255CrossRefGoogle Scholar
  51. Ford RA, Api AM, Letizia CS (1992) Monographs on fragrance raw materials. Food Chem Toxicol 30(Suppl):1S–138SPubMedGoogle Scholar
  52. Fourie TG, Snyckers FO (1989) A pentacyclic triterpene with anti-inflammatory and analgesic activity from the roots of Commiphora merkeri. J Nat Prod 52:1129–1131PubMedCrossRefGoogle Scholar
  53. Francis JA, Raja SN, Nair MG (2004) Bioactive terpenoids and guggulusteroids from Commiphora mukul gum resin of potential anti-inflammatory interest. Chem Biodiv 1:1842–1853CrossRefGoogle Scholar
  54. Gajbhiye NA, Jayanti S, Makasana, Geetha KA (2011) Chemical screening of guggul (Commiphora wightii) accessions collected from different natural habitats of Gujarat.
  55. Goyal C, Ahuja M, Sharma S (2011) Preparation and evaluation of anti-inflammatory activity of gugulipid-loaded proniosomal gel. Acta Pol Pharma Drug Res 68:147–150Google Scholar
  56. Gujral ML, Sareen K, Tangri KK, Amma MK, Roy AK (1960) Antiarthritic and anti-inflammatory activity of gum guggul (Balsamodendron mukul Hook). Indian J Physiol Pharmacol 4:267–273PubMedGoogle Scholar
  57. Gupta A, Kapoor NK, Nityanand S (1982) Mechanism of hypolipidemic action of standardized extract. Indian J Pharmacol 14:65Google Scholar
  58. Gupta P, Shivanna KR, Mohan Ram HY (1996) Apomixis and polyembryony in the guggul plant, Commiphora wightii. Ann Bot 78:67–72CrossRefGoogle Scholar
  59. Gupta P, Shivanna KR, Mohan Ram HY (1998) Pollen-pistil interaction in a non-pseudogamous apomict, Commiphora. Ann Bot 81:589–594CrossRefGoogle Scholar
  60. Habtemariam S (2003) Cytotoxic and cytostatic activity of erlangerins from Commiphora erlangeriana. Toxicon 41:723–727PubMedCrossRefGoogle Scholar
  61. Haffor AS (2009) Effect of myrrh (Commiphora molmol) on leukocyte levels before and during healing from gastric ulcer or skin injury. J Immunotoxicol 7:68–75CrossRefGoogle Scholar
  62. Hanuš O, Rezankab T, Dembitsky VM, Moussaieff A (2005) Myrrh—Commiphora chemistry. Biomed Papers 149:3–28Google Scholar
  63. Haque S, Farooqi AHA, Gupta MM, Sangwan RS, Khan A (2007) Effect of ethrel, chlormequat, chloride and paclobutrazol on growth and pyrethrins accumulation in Chrysanthemum cinerariaefolium Vis. Plant Growth Regul 51:263–269CrossRefGoogle Scholar
  64. Haque I, Bandopadhyay R, Mukhopadhyay K (2009a) Intraspecific variation in Commiphora wightii populations based on internal transcribed spacer (ITS-5.8S-ITS2) sequence of rDNA. Diversity 1:89–101CrossRefGoogle Scholar
  65. Haque I, Bandopadhyay R, Mukhopadhyay K (2009b) Population genetic structure of the endangered and endemic medicinal plant Commiphora wightii. Mol Biol Rep 37:847–854PubMedCrossRefGoogle Scholar
  66. Hough L, Jones JKN, Wadman WH (1952) Some observations on the constitution of Gum Myrrh. J Chem Soc 796–800. doi: 10.1039/JR9520000796
  67. Hu CY, Wang PG (1983) Meristem, shoot tip and bud culture. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture. MacMillan Publ Co, New York 1:177–227Google Scholar
  68. ICH (1993) Q1A stability testing of new drug substances and products. International conference on harmonization, IFPMA, GenevaGoogle Scholar
  69. IUCN (2011) IUCN red list of threatened species. Version 2011.1. <>
  70. Jain A, Gupta VB (2006) Chemistry and pharmacological profile of guggul- a review. Indian J Trad Know 5:478–483Google Scholar
  71. Jain A, Rout GR, Raina SN (2002) Somatic embryogenesis and plant regeneration from callus culture of Phlox paniculata Linn. Sci Hort 94:137–143CrossRefGoogle Scholar
  72. Kalia RK, Singh R, Rai M, Mishra GP, Singh SR, Dhawan AK (2011) Biotechnological interventions in sea buckthorn (Hippophae L.): current status and future prospects. Trees 25:559–575CrossRefGoogle Scholar
  73. Kalpesh BI, Mohan JSS (2008) Intraspecific isozymes variation in Commiphora wightii (Arn.) Bhandari: a traditional hypocholesteremic medicinal shrub from Gujarat, India. J Herb Spices Med Plants 13:25–40Google Scholar
  74. Kant T, Prajapati S, Parmar A (2010) Efficient micropropagation from cotyledonary node cultures of Commiphora wightii (Arn.) Bhandari, an endangered medicinally important desert plant. J Plant Dev 17:37–48Google Scholar
  75. Kimura I, Yoshikawa M, Kobayashi S, Sugihara Y, Suzuki M, Oominami H, Murakami T, Matsuda H, Doiphode VV (2001) New triterpenes, myrrhanol A and myrrhanone A, from guggul gum resins, and their potent anti-inflammatory effect on adjuvant induced air-pouch granuloma of mice. Bioorg Med Chem Lett 11:985–989PubMedCrossRefGoogle Scholar
  76. Kshetrapal S, Sharma R (1993) Studies on the effect of various plant extracts on the sprouting behaviour of cuttings of Commiphora wightii (Arn.) Bhandari and C. agallocha Engl. J Indian Bot Soc 72:73–75Google Scholar
  77. Kumar S, Suri SS, Sonie KC, Ramawat KG (2003) Establishment of embryonic cultures and somatic embryogenesis in callus culture of guggul—Commiphora wightii (Arn.) Bhandari. Indian J Exp Biol 4:69–77Google Scholar
  78. Kumar S, Suri SS, Sonie KC, Ramawat KG (2004) Development of resin canals during somatic embryogenesis in callus culture of Commiphora wightii. Indian J Biotechnol 3:267–270Google Scholar
  79. Kumar S, Mathur M, Jain AK, Ramawat KG (2006) Somatic embryo proliferation in Commiphora wightii and evidence for guggulsterone production in culture. Indian J Biotechnol 5:217–222Google Scholar
  80. Lal H, Kasera KP (2010) Status and distribution range of Guggul: a critically endangered medicinal plant from the Indian Thar Desert. Sci Cult 76:531–533Google Scholar
  81. Lather A, Gupta V, Bansal P, Sahu M, Sachdeva K, Ghaiye P (2011) An ayurvedic polyherbal formulation Kaishore Guggulu. Int J Pharma Biol Arch 2:497–503Google Scholar
  82. Lemenih M, Teketay D (2003) Frankincense and myrrh resources of Ethiopia: medicinal and industrial uses. Ethiop J Sci 26:161–172Google Scholar
  83. Leung AY (1980) Encyclopaedia of common natural ingredients used in food, drugs and cosmetics. Wiley, New York, pp 241–242Google Scholar
  84. Lv N, Song MY, Kim EK, Park JW, Kwon KB, Park BH (2008) Guggulsterone, a plant sterol, inhibits NF-kappaB activation and protects pancreatic beta cells from cytokine toxicity. Mol Cell Endocrinol 289:49–59PubMedCrossRefGoogle Scholar
  85. Ma J, Jones SH, Hecht SM (2005) A dihydroflavonol glucoside from Commiphora africana that mediates DNA strand scission. J Nat Prod 68:115–117PubMedCrossRefGoogle Scholar
  86. Mabberley DJ (2008) Mabberley’s Plant-book: a portable dictionary of plants, their classification and uses. Cambridge University Press, CambridgeGoogle Scholar
  87. Macha MA, Matta A, Chauhan SS, Siu MKW, Ralhan R (2010) 14-3-3 zeta is a molecular target in guggulsterone induced apoptosis in head and neck cancer cells. BMC Cancer 10:655. doi: 10.1186/1471-2407-10-655 PubMedCrossRefGoogle Scholar
  88. Maheshwari DV (2010) Guggul plantation shows good success in Kutch. Find Articles/Business/DNA: Daily News &amp; Analysis; Mumbai/July 23Google Scholar
  89. Malhotra CL, Agrawal YL, Mehta VL, Prasad S (1970) The effect of various fractions of gum guggul on experimentally produced hypercholesterolemic in chicks. Indian J Med Res 58:394–395PubMedGoogle Scholar
  90. Manguro LO, Mukonyi KM, Gethiomi JK (1996) Bisabolenes and furanosesquiterpenoids of Kenyan Commiphora kua resin. Planta Med 62:84–85PubMedCrossRefGoogle Scholar
  91. Marcotullio M, Santi C, Mwankie G, Curini M (2009) Chemical composition of the essential oil of Commiphora erythraea. Nat Prod Commun 4:1751–1754PubMedGoogle Scholar
  92. Mathur M, Jain AK, Ramawat KG (2007a) Optimization of guggulsterone production in callus cultures of Commiphora wightii (Arn.) Bhandari. Indian J Biotchnol 6:525–531Google Scholar
  93. Mathur M, Jain AK, Dass S, Ramawat KG (2007b) Guggulserone production in cell suspension cultures of Commiphora wightii grown in shake flask and bioreactors. Biotechnol Lett 29:979–982PubMedCrossRefGoogle Scholar
  94. Matsuda H, Morikawa T, Ando S, Oominami H, Murakami T, Kimura I, Yoshikawa M (2004) Absolute stereostructures of polypodane-type triterpenes, myrrhanol A and myrrhanone A, from guggul-gum resin (the resin of Balsamodendron mukul). Chem Pharm Bull 52:1200–1203PubMedCrossRefGoogle Scholar
  95. McDowell PG, Lwande W, Deans SG, Waterman PG (1988) Volatile resin exudate from stem bark of Commiphora rostrata: potential role in plant defence. Phytochem 27:2519–2521CrossRefGoogle Scholar
  96. Meselhy R (2003) Inhibition of LPS-induced NO production by the oleo-gum resin of Commiphora wightii and its constituents. Phytochem 62:213–218CrossRefGoogle Scholar
  97. Mesorb B, Nesbitt MR, Pandey CR (1998) High-performance liquid chromatographic method for fingerprinting and quantative determination of E- and Z-guggulsterones in Commiphora mukul resin and its products. J Chromatogr 720:189–196CrossRefGoogle Scholar
  98. Meyer AS (2000) Alternative focus: the promise of Guggul. HIV Resour Rev l5:1–7Google Scholar
  99. Mothana RA, Lindequist U, Gruenert R, Bednarski PJ (2009) Studies of the in vitro anticancer, antimicrobial and antioxidant potentials of selected Yemeni medicinal plants from the island Soqotra. BMC Complement Altern Med 9:7. doi: 10.1186/1472-6882-9-7 PubMedCrossRefGoogle Scholar
  100. Mothana RA, Al-Rehaily AJ, Schultze W (2010) Chemical analysis and biological activity of the essential oils of two endemic Soqotri Commiphora species. Molecules 15:689–698PubMedCrossRefGoogle Scholar
  101. Murray MT (1995) The healing power of herbs: the enlightened person’s guide to the wonders of medicinal plants, 2nd ed. pp 197–202Google Scholar
  102. Nadkarni AK (1954) Indian materia medica, vol 1. Popular Book Depot, Bombay, pp 167–170Google Scholar
  103. Niranjan R, Kamat P, Nath C, Shukla R (2010) Evaluation of guggulipid and nimesulide on production of inflammatory mediators and GFAP expression in LPS stimulated rat astrocytoma, cell line (C6). J Ethnopharmacol 127:625–630PubMedCrossRefGoogle Scholar
  104. Nohr A, Rasmussenb B, Straandc J (2009) Resin from the mukul myrrh tree, guggul, can it be used for treating hypercholesterolemia? A randomized, controlled study. Comp Therapies Med 17:16–22CrossRefGoogle Scholar
  105. Ojha KS, Nandave M, Arora S, Mehra DR, Joshi S, Narang R, Arya DS (2008) Effect of Commiphora mukul extract on cardiac dysfunction in isoproterenol induced myocardial infraction. Indian J Exp Biol 46:646–652PubMedGoogle Scholar
  106. Panda S, Kar A (1999) Gugulu (Commiphora mukul) induces triiodothyronine production: possible involvement of lipid peroxidation. Life Sci 65:137–141CrossRefGoogle Scholar
  107. Paraskeva MP, Van Vuuren SF, Van Zyl RL, Davids H, Viljoen AM (2008) The in vitro biological activity of selected South African Commiphora species. J Ethnopharmacol 119:673–679PubMedCrossRefGoogle Scholar
  108. Patel DH, Upadhyay NV, Patel MA, Dalal KC, Macwan SJ, Sriram S (2008) Effect of date of incision for gum production in guggal—Commiphora wightii Arn (Bhand). J Res Educ Indian Med 14:57–59Google Scholar
  109. Patil VD, Nayak UR, Dev S (1972) Chemistry of ayurvedic crude drugs I. Guggulu (Resin from Commiphora mukul-I: steroidal constituents. Tetrahedron 28:2341–2352CrossRefGoogle Scholar
  110. Patil VD, Nayak UR, Dev S (1973) Chemistry of Ayurvedic crude drugs III. Guggulu: long chain aliphatic tetrols, a new class of naturally occurring, lipids. Tetrahedron 29:1595–1598CrossRefGoogle Scholar
  111. Phale P, Subramani J, Bhatt PN, Mehta AR (1989) Viability and guggul steroid production in immobilized tissue culture cells of Commiphora wightii. Indian J Exp Biol 27:338–340Google Scholar
  112. Pradhan SK, Dash NC (2011) Standardization of Vatari Guggulu- an ayurvedic polyherbal formulation. Int J Pharma World Res 2:1–13Google Scholar
  113. Prakash J, Kasera P, Chawan DD (2000) A report on polyembryony in Commiphora wightii from Thar desert, India. Curr Sci 78:1185–1187Google Scholar
  114. Prasad RS, Sukh Dev (1976) Chemistry of ayurvedic crude drugs: guggulu-4, absolute stereochemistry of Mukul. Tetrahedron 32:1437–1441CrossRefGoogle Scholar
  115. Provan GJ, Waterman PG (1988) Major triterpenes from the resins of Commiphora incisa and C. kua and their potential chemotaxonomic significance. Phytochem 27:3841–3843CrossRefGoogle Scholar
  116. Provan GJ, Gray AI, Waterman PG (1992) Mansumbinane derivatives from stem bark of Commiphora kua. Phytochem 31:2065–2068CrossRefGoogle Scholar
  117. Purushothaman KK, Chandrasekharan S (1976) Guggul sterols from Commiphora mukul (Burseraceae). Indian J Chem 11:802–804Google Scholar
  118. Rahman A, Chaoudhary MI, Shaheen F, Asraf M, Jahan S (1998) Microbial transformations of Hypolipemic E-Guggulsterone. J Nat Prod 61:428–431CrossRefGoogle Scholar
  119. Ramawat KG, Mathur M (2007) Factors affecting production of secondary metabolites. In Ramawat KG, Merillon JM (eds) Biotechnology of secondary metabolites. Science, Enfield, pp 59–101Google Scholar
  120. Ramawat KG, Mathur M, Dass S, Suthar S (2008) Guggulsterone: a potent natural hypolipidemic agent from Commiphora wightii- problems, preservence, and prospects. In: Ramawat KG, Merillon JM (eds) Bioactive molecules and medicinal plants. Heidelberg, Springer, pp 101–121Google Scholar
  121. Rao RM, Khan ZA, Shah AH (2001) Toxicity studies in mice of Commiphora molmol oleo-gum resin. J Ethnopharamacol 76:151–154CrossRefGoogle Scholar
  122. Samantaray S, Geetha KA, Hidayath KP, Satyabrata M (2009) Identification of RAPD markers linked to sex determination in guggul [Commiphora wightii (Arn)] Bhandari. Plant Biotechnol Rep 4:95–99CrossRefGoogle Scholar
  123. Samantaray S, Bishoyi A, Geetha KA, Satyabrata M (2011) Assessment of genetic diversity using RAPD and ISSR markers in guggul (Commiphora wightii)
  124. Samudio I, Konopleva M, Safe S, McQueen T, Andreeff M (2005) Guggulsterones induce apoptosis and differentiation in acute myeloid leukemia: identification of isomer-specific antileukemic activities of the pregnadienedione structure. Mol Cancer Ther 4:1982–1992PubMedCrossRefGoogle Scholar
  125. Sangwan NS, Farooqi AHA, Fatima S, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:3–21CrossRefGoogle Scholar
  126. Sarkhel S, Yadava U, Prakas P, Jain GK, Singh A, Maulik PR (2001) Guggulsterone E, a lipid-lowering agent from Commiphora mukul. Acta Crystallogr 57:285–286Google Scholar
  127. Satyavati GV, Dwarakanath C, Tripath SN (1969) Experimental studies on the hypocholesterolemic effect of Commiphora mukul Engl. (Guggul). Indian J Med Res 57:1950–1962PubMedGoogle Scholar
  128. Schmeer K, Nicholson G, Zhang S, Bayer E, Bohning-Gaese K (1996) Identification of the lipids and the ant attractant 1,2-dioleoylglycerol in the arils of Commiphora guillaumini Perr. (Burseraceae) by supercritical fluid chromatography—atmospheric pressure chemical ionization mass spectrometry. J Chromatogr 727:139–146CrossRefGoogle Scholar
  129. Sharma ML, Gour HN (1987) A new leaf spot of Commiphora wightii a medical plant caused by Phoma sp. Curr Sci 56:538–539Google Scholar
  130. Sharma R, Suri SS, Ramawat KG, Sonie KC (1998) Biotechnological approaches to the medicinal plants of Arawali Hills with special reference to Commiphora wightii. In: Khan IA, Khanum A (eds) Role of biotechnology in medicinal and aromatic plants. Ukaaz, Hyderabad, pp 1–140Google Scholar
  131. Sharma B, Salunke R, Srivastava S, Majumder C, Roy P (2009) Effects of guggulsterone isolated from Commiphora mukul in high fat diet induced diabetic rats. Food Chem Toxicol 47:2631–2639PubMedCrossRefGoogle Scholar
  132. Shishodia S, Aggarwal BB (2004) Guggulsterone inhibits NF-kappa-B and I-kappa-B-alpha-Kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. J Biol Chem 279:47148–47158PubMedCrossRefGoogle Scholar
  133. Shishodia S, Sethi G, Ahn K, Aggarwal BB (2007) Guggulsterone inhibits tumor cell proliferation, induces S-phase arrest, and promotes apoptosis through activation of c-Jun N-terminal kinase, suppression of AKT pathway, and downregulation of antiapoptotic gene products. Biochem Pharmacol 74:118–130PubMedCrossRefGoogle Scholar
  134. Shishodia S, Kuzhuvelil B, Harikumar DS, Ramawat KG, Aggarwal BB (2008) The Guggul for chronic diseases: ancient medicine, modern targets. Anticancer Res 28:3647–3664PubMedGoogle Scholar
  135. Siddiqui ZM (2011) Guggul: an excellent herbal panacea. Asian J Pharma Health Sci 1:35–39Google Scholar
  136. Singh V, Kaul S, Chander R, Kapoor NK (1990) Stimulation of low density lipoprotein receptor activity in liver membrane of guggulsterone treated rats. Pharmalogical Res 22:37–44CrossRefGoogle Scholar
  137. Singh RB, Niaz MA, Ghosh S (1994) Hypolipidemic and antioxidant effects of Commiphora mukul as an adjunct to dietary therapy in patients with hypercholesterolemia. Cardiovasc Drugs Ther 8:659–664PubMedCrossRefGoogle Scholar
  138. Singh SK, Verma N, Gupta RC (1995) Sensitive high-performance liquid chromatographic assay method for the determination of guggulsterone in serum. J Chromatogr Biomed Appl 670:173–176CrossRefGoogle Scholar
  139. Singh AK, Suri SS, Ramawat KG (1997) Somatic embryogenesis from immature zygotic embryos of Commiphora wightii, a woody medicinal plant. Gartenbauwissenschaft 62:44–48Google Scholar
  140. Singh B, Prasad S, Vinjamury KE, Mishra C, Lakshmi SN, Singh V, Meier M, Gandhi M (2007) Ayurvedic and collateral herbal treatments for hyperlipidemia: a systematic review of randomized controlled trials and quasi experimental designs. Altern Ther Health Med 13:22–28PubMedGoogle Scholar
  141. Singh N, Garg A, Yadav K, Kumari S (2010) Influence of growth regulators on the explants of Commiphora mukul (Hook. ex Stocks) Engl. under in vitro conditions. Researcher 2:41–48Google Scholar
  142. Sobti SN, Singh SD (1961) A chromosome survey of Indian medical plants: Part-1. Proc Indian Acad Sci 3:138–144Google Scholar
  143. Soni V (2010a) Efficacy of in vitro tissue culture versus stem cuttings for propagation of Commiphora wightii in Rajasthan, India. Conserv Evidence 7:91–93Google Scholar
  144. Soni V (2010b) Conservation of Commiphora wightii, an endangered medicinal shrub, through propagation and planting, and education awareness programs in the Aravali Hills of Rajasthan, India. Conserv Evidence 7:27–31Google Scholar
  145. Soni V, Sawarnkar PL, Tyagi V, Pareek LK (2009) Varaiation in E- and Z-guggulsterone of Commiphora wightii. South African J Bot. doi: 10.1016/J.SBJB.2009.10.004
  146. Srivastava M, Nityanand S, Kapoor N (1984) Effect of hypocholesterolemic agents of plant origin on catecholamine biosynthesis in normal and cholesterol fed rabbits. J Biosci 6:277–282CrossRefGoogle Scholar
  147. Suri SS, Ramawat KG (1996) Effect of Calotropis latex on laticifers differentiation in callus cultures of Calotropis procera. Biol Plant 38:185–190CrossRefGoogle Scholar
  148. Suthar S, Ramawat KG (2010) Growth retardants stimulate guggulsterone production in the presence of fungal elicitor in fed-batch cultures of Commiphora wightii. Plant Biotechnol Rep 4:9–13CrossRefGoogle Scholar
  149. Suthar S, Thul S, Kukreja AK, Ramawat KG (2008) RAPD markers reveal polymorphism in Commiphora wightii, an endangered medicinal tree. J Cell Tissue Res 8:1477–1480Google Scholar
  150. Swanepoel W (2011) Commiphora buruxa (Burseraceae), a new species from Southern Namibia. South African J Bot 77:608–612CrossRefGoogle Scholar
  151. Tanwar YS, Mathur M, Ramawat KG (2007) Morphactin influence guggulsterone production in callus cultures of Commiphora wightii. Plant Growth Regul 51:93–98CrossRefGoogle Scholar
  152. Thappa DM, Dogra J (1994) Nodulocystic acne: oral guggulipid versus tetracycline. J Dermatol 21:729–731PubMedGoogle Scholar
  153. Thomas AF (1961) The triterpenes of Commiphora—II. The structure of comic acid C and comic acid D. Tetrahedron 15:212–216CrossRefGoogle Scholar
  154. Tripathi YB, Malhotra OP, Tripathi SN (1984) Thyroid stimulation action of Z-Guggulsterone obtained from Commiphora mukul. Planta Med 50:78–80CrossRefGoogle Scholar
  155. Ulbright C, Basch E, Szapary P, Hammerness P, Axentsev S, Boon H, Kroll D, Garraway L, Vora M, Woods J (2005) Guggul for hyperlipidemia: a review by the natural standard research collaboration. Complement Ther Med 13:279–290CrossRefGoogle Scholar
  156. Urizar NL, Moore DD (2003) Gugulipid: a natural cholesterol lowering agent. Annul Rev Nutrition 23:303–313CrossRefGoogle Scholar
  157. Urizar NL, Liverman AB, Dodds DT, Silva FV, Ordentlich P (2002) A natural product that lowers cholesterol as an antagonist ligand for FXR. Science 269:1703–1706CrossRefGoogle Scholar
  158. Van Wyk BE, Wink M (2004) Medicinal plants of the world. Briza Publications, South AfricaGoogle Scholar
  159. Verma SK, Bordia A (1988) Effect of Commiphora mukul (gum gulggulu) in patients of hyperlipidemia with special reference to HDL-cholesterol. Indian J Med Res 87:356–360PubMedGoogle Scholar
  160. Verma N, Singh SK, Gupta RC (1998) Simultaneous determination of the stereoisomers of guggulsterone in serum by high-performance liquid chromatography. J Chromatogr 708:243–248CrossRefGoogle Scholar
  161. Verma S, Jain A, Gupta VB (2010) Synergistic and sustained anti-inflammatory activity of guggul with the Ibuprofen: a preliminery study. Int J Pharma Biol Sci 1:1–7Google Scholar
  162. Waterman PG, Ampofo S (1985) Dammarane triterpenes from the stem bark of Commiphora dalzielii. Phytochem 24:2925–2928CrossRefGoogle Scholar
  163. Weeks A, Simpson BB (2005) The phylogenetic history and biogeography of the frankincense and myrrh family (Burseraceae) based on nuclear and chloroplast sequence data. Mol Phylogenet Evol 35:85–101PubMedCrossRefGoogle Scholar
  164. Weeks A, Simpson BB (2007) Molecular phylogenetic analysis of Commiphora (Burseraceae) yields insight on the evolution and historical biogeography of an “impossible” genus. Mol Phylogenet Evol 42:62–79PubMedCrossRefGoogle Scholar
  165. Wu J, Xia C, Meier J, Li S, Lala HuX (2002) The hypolipidmic natural product guggulsterone acts as an antagonist of bile acid receptor. Mol Endocrinol 1:1590–1597CrossRefGoogle Scholar
  166. Xiao D, Singh S (2007) Z-Guggulsterone, a constituent of Ayurvedic medicinal plant Commiphora mukul, inhibits angiogenesis in vitro and in vivo. Mol Cancer Ther 7:171–180CrossRefGoogle Scholar
  167. Yadav BBL, Billore KV, Joseph JG, Chaturvedy DD (1999) Cultivation of GUGGULU. Central Council for Research in Ayurveda and Siddha, New Delhi. India, pp 1–87Google Scholar
  168. Yang YJ, Della AM, Baile AC (2008) Guggulsterone inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 Cells. Obesity 16:16–22PubMedCrossRefGoogle Scholar
  169. Yusuf A, Rathore TS, Shekhawat NS (1999) Micropropagation of Commiphora wightii (Arn.) Bhandari—A threatened medicinal plant of semi-arid region. Indian J Plant Genet Res 12:371–375Google Scholar
  170. Zhu N, Rafi M, Dipaola SR (2001) Bioactive constituents from gum guggul (Commiphora wightii) J. Phytochem 56:723–727CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Alpana Kulhari
    • 1
    • 2
  • Arun Sheorayan
    • 1
    • 2
  • Sanjay Kalia
    • 3
  • Ashok Chaudhury
    • 2
  • Rajwant K. Kalia
    • 1
    • 4
  1. 1.Centre for Plant BiotechnologyHisarIndia
  2. 2.Department of Bio- and NanotechnologyGuru Jambeshwar University of Science and TechnologyHisarIndia
  3. 3.Department of BiotechnologyNew DelhiIndia
  4. 4.Division II (ILUM & FS)Central Arid Zone Research InstituteJodhpurIndia

Personalised recommendations