Skip to main content
Log in

Remnant genetic diversity detected in an ancient crop: Triticum dicoccon Schrank landraces from Asturias, Spain

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Emmer wheat, Triticum dicoccon Schrank was one of the founder crops of Neolithic agriculture. Though its cultivation was largely replaced by hexaploid wheats 2000 years ago, pockets of small scale cultivation can still be found. One such area is the Asturias region of Northern Spain, where emmer wheat remains a traditional crop for high value specialist culinary uses, and farmers grow locally adapted landraces. In order to study the diversity of these landraces, we sampled emmer wheat from different regions of Asturias, and genotyped multiple plants from each village using nuclear and chloroplast microsatellites. A high level of variation was observed with markers from both genomes, including a novel chloroplast haplotype. A strong geographic structure was observed in the Asturian emmer wheats in both the chloroplast markers and the nuclear microsatellite data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allender CJ, Allainguillaume J, Lynn J, King GJ (2007) Simple sequence repeats reveal uneven distribution of genetic diversity in chloroplast genomes of Brassica oleracea L. and (n = 9) wild relatives. Theor Appl Genet 114:609–618

    Article  PubMed  CAS  Google Scholar 

  • Alonso N (2008) Crops and agriculture during the Iron Age and late antiquity in Cerdanyola del Valle`s (Catalonia, Spain). Veg Hist Archaeobot 17:75–84

    Article  Google Scholar 

  • Alvarez JB, Caballero L, Ureña P, Vacas M, Martıín LM (2007) Characterisation and variation of morphological traits and storage proteins in Spanish emmer wheat germplasm (Triticum dicoccon). Genet Resour Crop Evol 54:241–248

    Article  CAS  Google Scholar 

  • Bonfield JK, Staden R (1996) Experiment files and their application during large-scale sequencing projects. DNA Seq 6:109–117

    PubMed  CAS  Google Scholar 

  • Bonfield JK, Smith KF, Staden R (1995) A new DNA sequence assembly program. Nucleic Acids Res 24:4992–4999

    Article  Google Scholar 

  • Brown TA (1999) How ancient DNA may help in understanding the origin and spread of agriculture. Philos Trans R Soc Lond B 354:89–97

    Article  CAS  Google Scholar 

  • Brown T, Lindsay S, Allaby R (2006) Using modern landraces of wheat to study the origins of European agriculture. In: Motley T, Zerega N, Cross H (eds) Darwin’s harvest. Columbia University Press, New York, NY

    Google Scholar 

  • Brown TA, Jones MK, Powell W, Allaby RG (2009) The complex origins of domesticated crops in the Fertile Crescent. Trends Ecol Evol 24:103–109

    Article  PubMed  Google Scholar 

  • Caballero L, Martin LM, Alveres JB (2007) Agrobiodiversity of hulled wheats in Asturias (North of Spain). Genet Resour Crop Evol 54:267–277

    Article  Google Scholar 

  • Caballero L, Martin LM, Alvarez JB (2008) Genetic diversity in Spanish populations of Triticum spelta L. (escanda): an example of an endangered genetic resource. Genet Resour Crop Evol 55:675–682

    Article  Google Scholar 

  • Charles M, Bogaard A, Jones G, Hodgson JH, Halstead P (2002) Towards the archaeobotanical identification of intensive cereal cultivation: present-day ecological investigation in the mountains of Asturias, northwest Spain. Veg Hist Archaeobot 11:133–142

    Article  Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolvers P, Powell W (2001) Assessment of genotype variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica 119:39–43

    Article  CAS  Google Scholar 

  • Fahima T, Röder MS, Wendehake K, Kirzhner VM, Nevo E (2002) Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 104:17–29

    Article  PubMed  CAS  Google Scholar 

  • Hirosawa S, Takumi S, Ishii T, Kawahara T, Nakamura C, Mori N (2004) Chloroplast and nuclear DNA variation in common wheat: insight into the origin and evolution of common wheat. Genes Genet Syst 79:271–282

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Andolfatto P (2007) Inference of population structure under a Dirichlet process model. Genetics 175:1787–1802

    Article  PubMed  CAS  Google Scholar 

  • Isaac AD, Muldoon M, Brown KA, Brown TA (2010) Genetic analysis of wheat landraces enables the location of the first agricultural sites in Italy to be identified. J Archaeol Sci 37:950–956

    Article  Google Scholar 

  • Ishii T, Mori N, Ogihara Y (2001) Evaluation of allelic diversity at chloroplast microsatellite loci among common wheat and its ancestral species. Theor Appl Genet 103:896–904

    Article  CAS  Google Scholar 

  • Jones H, Leigh FJ, Mackay I, Bower MA, Smith LM, Charles MP, Jones G, Jones MK, Brown TA, Powell W (2008) Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the Fertile Crescent. Mol Biol Evol 25(10):2211–2219

    Article  PubMed  CAS  Google Scholar 

  • Leigh F, Lea V, Law J, Wolters P, Powell W, Donini P (2003) Assesment of EST- and genomic microsatellite markers for variety discrimination and genetic studies in wheat. Euphytica 133:359–366

    Article  CAS  Google Scholar 

  • Li YC, Fahima T, Peng JH, Röder MS, Kirzhner VM, Beiles A, Korol AB, Nevo E (2000) Edaphic microsatellite DNA divergence in wild emmer wheat, Triticum dicoccoides, at a microsite: Tabigha, Isreal. Theor Appl Genet 101:1029–1038

    Article  CAS  Google Scholar 

  • Lister D, Thaw S, Bower M, Jones H, Charles MP, Jones G, Smith LM, Howe CJ, Brown TA, Jones MK (2009) Latitudinal variation in a photoperiod response gene in European barley: insight into the dynamics of agricultural spread from ‘historic’ specimens. J Archaeol Sci 36(4):1092–1098

    Article  Google Scholar 

  • Lui K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129

    Article  Google Scholar 

  • Martinez NA (2005) Agriculture and food from the Roman to the Islamic period in the North-East of the Iberian Peninsula: archaeobotanical studies in the city of Lleida (Catalonia, Spain). Veg Hist Archaeobot 14:341–361

    Article  Google Scholar 

  • McCauley DE (1995) The use of chloroplast DNA polymorphism in studies of geneflow in plants. Trends Ecol Evol 10:198–202

    Article  PubMed  CAS  Google Scholar 

  • Molina-Cano J-L, Russell JR, Moralejo MA, Escacena JL, Arias G, Powell W (2005) Chloroplast DNA microsatellite analysis supports a polyphyletic origin for barley. Theor Appl Genet 110:613–619

    Article  PubMed  CAS  Google Scholar 

  • Ogihara Y, Isono K, Kojima T et al (2000) Chinese spring wheat (Triticum aestivum L.) chloroplast genome: complete sequence and contig clones. Plant Mol Biol Rep 18:243–253

    Article  CAS  Google Scholar 

  • Oliveira HR (2011) Archaeogenetics and the spread of agriculture in the Iberian Peninsula and Northwest Africa: a study of genetic variation within tetraploid and diploid wheats. PhD dissertation, University of Cambridge, Cambridge, UK

  • Oliveira HR, Jones H, Leigh F, Lister DL, Jones MK, Peña-Chocarro L (2011) Phylogeography of einkorn landraces in the Mediterranean basin and Central Europe: population structure and cultivation history. Archaeol Anthropol Sci 3:327–341

    Article  Google Scholar 

  • Peleg Z, Fahima T, Abbo S, Krugman T, Saranga Y (2008) Genetic structure of wild emmer wheat populations as reflected by transcribed versus anonymous SSR markers. Genome 51(3):187–195

    Article  PubMed  Google Scholar 

  • Peña-Chocarro L (1996) In situ conservation of hulled wheat species: the case of Spain. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats: proceedings of the first international workshop on hulled wheats, 21–22 July 1995, Castelvecchio Pascoli, Tuscany, Italy (promoting the conservation and use of underutilised and neglected crops. 4). IPGRI, Rome

  • Peña-Chocarro L, Zapata L (2003) Post-harvest processing of hulled wheats; an ethnoarchaeological approach. In: Anderson PC, Cummings LS, Schippers TK, B Simonel (eds) Le traitement des recoltes: un regard sur la diversite, du Neolithique au present. XXIII rencontres internationals d’archeologie et d’histoire d’Antibes. Editions APDCA, Antibes

  • Perrier X, Jacquemoud-Collet JP (2006). DARwin software http://darwin.cirad.fr/darwin

  • Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Enfield, Science Publishers, Montpellier, pp 43–76

    Google Scholar 

  • Pflüger LA, Martín LM, Alvarez JB (2001) Variation in the HMW and LMW glutenin subunits from Spanish accessions of emmer wheat (Triticum turgidum ssp. dicoccum Schrank). Theor Appl Genet 102(5):767–772

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Google Scholar 

  • Provan J, Soranzo N, Wilson NJ, Goldstein DB, Powell W (1999) A low mutation rate for chloroplast microsatellites. Genetics 153:943–947

    PubMed  CAS  Google Scholar 

  • Provan J, Wolters P, Caldwell KH, Powell W (2004) High-resolution organellar genome analysis of Triticum and Aegliops sheds new light on cytoplasm evolution in wheat. Theor Appl Genet 108:1182–1190

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149(4):2007–2023

    PubMed  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Sigaut F (1978) Identification des techniques de decolte des grains alimentaires. Journal d’Agriculture Traditionelle et de Botanique Appliquée 25:145–162

    Google Scholar 

  • Tereso JP (2009) Plant macrofossils from the Roman settlement of Terronha de Pinhovelo, northwest Iberia. Veg Hist Archaeobot 18:489–501

    Article  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNA. PNAS 84:9054–9058

    Article  PubMed  CAS  Google Scholar 

  • Zapata L (2007) First farmers along the coast of the Bay of Biscay. In: Colledge S, Conolly J (eds) The origins and spread of domestic plants in Southwest Asia and Europe. Left Coast Press, Walnut Creek, CA, pp 189–208

    Google Scholar 

  • Zapata L, Peña-Chocarro L, Pérez-Jordá G, Stika H-P (2004) Early neolithic agriculture in the Iberian Peninsula. World Prehist 18:283–325

    Article  Google Scholar 

  • Zeder MA, Emshwiller E, Smith BD, Bradley DG (2006) Documenting domestication: the intersection of genetics and archaeology. Trends Genet 22(3):139–155

    Article  PubMed  CAS  Google Scholar 

  • Zhang LY, Bernard M, Leroy P, Feuillet C, Sourdille P (2005) High transferability of bread wheat EST-derived SSRs to other cereals. Theor Appl Genet 111:677–687

    Article  PubMed  CAS  Google Scholar 

  • Zilhão J (2000) From the mesolithic to the neolithic in the Iberian Peninsula. In: Price DT (ed) Europe’s first farmers. Cambridge University Press, Cambridge, UK, pp 144–182

    Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley. Oxford University Press

Download references

Acknowledgments

This work was funded by the Natural Environment Research Council as part of the consortium project ‘The Domestication of Europe’. We thank the project partners at the University of Cambridge, University of Manchester and University of Sheffield for helpful advice. The consortium consists of Mim Bower (McDonald Institute of Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3DZ), Keri Brown (Faculty of Life Sciences, Jackson’s Mill, The University of Manchester, PO Box 88, Manchester M60 1QD), Mike Charles (Department of Archaeology, University of Sheffield, Northgate House, West Street, Sheffield S1 4ET), Sue Colledge (Department of Archaeology, University of Sheffield, Northgate House, West Street, Sheffield S1 4ET), Rachel Giles (Faculty of Life Sciences, Jackson’s Mill, The University of Manchester, PO Box 88, Manchester M60 1QD), Glynis Jones (Department of Archaeology, University of Sheffield, Northgate House, West Street, Sheffield S1 4ET), Huw Jones (NIAB, Huntingdon Road, Cambridge CB3 0LE, UK), Martin Jones (McDonald Institute of Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3DZ), Fiona Leigh (NIAB, Huntingdon Road, Cambridge CB3 0LE, UK), Diane Lister (McDonald Institute of Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3DZ), Wayne Powell (NIAB, Huntingdon Road, Cambridge CB3 0LE, UK), Lydia Smith (NIAB, Huntingdon Road, Cambridge CB3 0LE, UK), Susan Thaw (Faculty of Life Sciences, Jackson’s Mill, The University of Manchester, PO Box 88, Manchester M60 1QD) and Terry Brown (Faculty of Life Sciences, Jackson’s Mill, The University of Manchester, PO Box 88, Manchester M60 1QD).HO is funded by a Portuguese Science and Technology Foundation doctoral grant (Ref. SFRH/BD/21748/2005). We wish to acknowledge the expertise of Leonor Peña-Chocarro and the generosity of all the farmers who donated material for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona J. Leigh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leigh, F.J., Oliveira, H.R., Mackay, I. et al. Remnant genetic diversity detected in an ancient crop: Triticum dicoccon Schrank landraces from Asturias, Spain. Genet Resour Crop Evol 60, 355–365 (2013). https://doi.org/10.1007/s10722-012-9840-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-012-9840-8

Keywords

Navigation