Genetic Resources and Crop Evolution

, Volume 60, Issue 1, pp 355–365 | Cite as

Remnant genetic diversity detected in an ancient crop: Triticum dicoccon Schrank landraces from Asturias, Spain

  • Fiona J. Leigh
  • Hugo R. Oliveira
  • Ian Mackay
  • Huw Jones
  • Lydia Smith
  • Petra Wolters
  • Mike Charles
  • Martin Jones
  • Wayne Powell
  • Terence A. Brown
  • Glynis Jones
Research Article


Emmer wheat, Triticum dicoccon Schrank was one of the founder crops of Neolithic agriculture. Though its cultivation was largely replaced by hexaploid wheats 2000 years ago, pockets of small scale cultivation can still be found. One such area is the Asturias region of Northern Spain, where emmer wheat remains a traditional crop for high value specialist culinary uses, and farmers grow locally adapted landraces. In order to study the diversity of these landraces, we sampled emmer wheat from different regions of Asturias, and genotyped multiple plants from each village using nuclear and chloroplast microsatellites. A high level of variation was observed with markers from both genomes, including a novel chloroplast haplotype. A strong geographic structure was observed in the Asturian emmer wheats in both the chloroplast markers and the nuclear microsatellite data.


Chloroplast microsatellites Emmer wheat Hulled wheat Microsatellites Population structure Triticum dicoccon 



This work was funded by the Natural Environment Research Council as part of the consortium project ‘The Domestication of Europe’. We thank the project partners at the University of Cambridge, University of Manchester and University of Sheffield for helpful advice. The consortium consists of Mim Bower (McDonald Institute of Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3DZ), Keri Brown (Faculty of Life Sciences, Jackson’s Mill, The University of Manchester, PO Box 88, Manchester M60 1QD), Mike Charles (Department of Archaeology, University of Sheffield, Northgate House, West Street, Sheffield S1 4ET), Sue Colledge (Department of Archaeology, University of Sheffield, Northgate House, West Street, Sheffield S1 4ET), Rachel Giles (Faculty of Life Sciences, Jackson’s Mill, The University of Manchester, PO Box 88, Manchester M60 1QD), Glynis Jones (Department of Archaeology, University of Sheffield, Northgate House, West Street, Sheffield S1 4ET), Huw Jones (NIAB, Huntingdon Road, Cambridge CB3 0LE, UK), Martin Jones (McDonald Institute of Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3DZ), Fiona Leigh (NIAB, Huntingdon Road, Cambridge CB3 0LE, UK), Diane Lister (McDonald Institute of Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3DZ), Wayne Powell (NIAB, Huntingdon Road, Cambridge CB3 0LE, UK), Lydia Smith (NIAB, Huntingdon Road, Cambridge CB3 0LE, UK), Susan Thaw (Faculty of Life Sciences, Jackson’s Mill, The University of Manchester, PO Box 88, Manchester M60 1QD) and Terry Brown (Faculty of Life Sciences, Jackson’s Mill, The University of Manchester, PO Box 88, Manchester M60 1QD).HO is funded by a Portuguese Science and Technology Foundation doctoral grant (Ref. SFRH/BD/21748/2005). We wish to acknowledge the expertise of Leonor Peña-Chocarro and the generosity of all the farmers who donated material for this research.

Supplementary material

10722_2012_9840_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 23 kb)


  1. Allender CJ, Allainguillaume J, Lynn J, King GJ (2007) Simple sequence repeats reveal uneven distribution of genetic diversity in chloroplast genomes of Brassica oleracea L. and (n = 9) wild relatives. Theor Appl Genet 114:609–618PubMedCrossRefGoogle Scholar
  2. Alonso N (2008) Crops and agriculture during the Iron Age and late antiquity in Cerdanyola del Valle`s (Catalonia, Spain). Veg Hist Archaeobot 17:75–84CrossRefGoogle Scholar
  3. Alvarez JB, Caballero L, Ureña P, Vacas M, Martıín LM (2007) Characterisation and variation of morphological traits and storage proteins in Spanish emmer wheat germplasm (Triticum dicoccon). Genet Resour Crop Evol 54:241–248CrossRefGoogle Scholar
  4. Bonfield JK, Staden R (1996) Experiment files and their application during large-scale sequencing projects. DNA Seq 6:109–117PubMedGoogle Scholar
  5. Bonfield JK, Smith KF, Staden R (1995) A new DNA sequence assembly program. Nucleic Acids Res 24:4992–4999CrossRefGoogle Scholar
  6. Brown TA (1999) How ancient DNA may help in understanding the origin and spread of agriculture. Philos Trans R Soc Lond B 354:89–97CrossRefGoogle Scholar
  7. Brown T, Lindsay S, Allaby R (2006) Using modern landraces of wheat to study the origins of European agriculture. In: Motley T, Zerega N, Cross H (eds) Darwin’s harvest. Columbia University Press, New York, NYGoogle Scholar
  8. Brown TA, Jones MK, Powell W, Allaby RG (2009) The complex origins of domesticated crops in the Fertile Crescent. Trends Ecol Evol 24:103–109PubMedCrossRefGoogle Scholar
  9. Caballero L, Martin LM, Alveres JB (2007) Agrobiodiversity of hulled wheats in Asturias (North of Spain). Genet Resour Crop Evol 54:267–277CrossRefGoogle Scholar
  10. Caballero L, Martin LM, Alvarez JB (2008) Genetic diversity in Spanish populations of Triticum spelta L. (escanda): an example of an endangered genetic resource. Genet Resour Crop Evol 55:675–682CrossRefGoogle Scholar
  11. Charles M, Bogaard A, Jones G, Hodgson JH, Halstead P (2002) Towards the archaeobotanical identification of intensive cereal cultivation: present-day ecological investigation in the mountains of Asturias, northwest Spain. Veg Hist Archaeobot 11:133–142CrossRefGoogle Scholar
  12. Eujayl I, Sorrells ME, Baum M, Wolvers P, Powell W (2001) Assessment of genotype variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica 119:39–43CrossRefGoogle Scholar
  13. Fahima T, Röder MS, Wendehake K, Kirzhner VM, Nevo E (2002) Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 104:17–29PubMedCrossRefGoogle Scholar
  14. Hirosawa S, Takumi S, Ishii T, Kawahara T, Nakamura C, Mori N (2004) Chloroplast and nuclear DNA variation in common wheat: insight into the origin and evolution of common wheat. Genes Genet Syst 79:271–282PubMedCrossRefGoogle Scholar
  15. Huelsenbeck JP, Andolfatto P (2007) Inference of population structure under a Dirichlet process model. Genetics 175:1787–1802PubMedCrossRefGoogle Scholar
  16. Isaac AD, Muldoon M, Brown KA, Brown TA (2010) Genetic analysis of wheat landraces enables the location of the first agricultural sites in Italy to be identified. J Archaeol Sci 37:950–956CrossRefGoogle Scholar
  17. Ishii T, Mori N, Ogihara Y (2001) Evaluation of allelic diversity at chloroplast microsatellite loci among common wheat and its ancestral species. Theor Appl Genet 103:896–904CrossRefGoogle Scholar
  18. Jones H, Leigh FJ, Mackay I, Bower MA, Smith LM, Charles MP, Jones G, Jones MK, Brown TA, Powell W (2008) Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the Fertile Crescent. Mol Biol Evol 25(10):2211–2219PubMedCrossRefGoogle Scholar
  19. Leigh F, Lea V, Law J, Wolters P, Powell W, Donini P (2003) Assesment of EST- and genomic microsatellite markers for variety discrimination and genetic studies in wheat. Euphytica 133:359–366CrossRefGoogle Scholar
  20. Li YC, Fahima T, Peng JH, Röder MS, Kirzhner VM, Beiles A, Korol AB, Nevo E (2000) Edaphic microsatellite DNA divergence in wild emmer wheat, Triticum dicoccoides, at a microsite: Tabigha, Isreal. Theor Appl Genet 101:1029–1038CrossRefGoogle Scholar
  21. Lister D, Thaw S, Bower M, Jones H, Charles MP, Jones G, Smith LM, Howe CJ, Brown TA, Jones MK (2009) Latitudinal variation in a photoperiod response gene in European barley: insight into the dynamics of agricultural spread from ‘historic’ specimens. J Archaeol Sci 36(4):1092–1098CrossRefGoogle Scholar
  22. Lui K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129CrossRefGoogle Scholar
  23. Martinez NA (2005) Agriculture and food from the Roman to the Islamic period in the North-East of the Iberian Peninsula: archaeobotanical studies in the city of Lleida (Catalonia, Spain). Veg Hist Archaeobot 14:341–361CrossRefGoogle Scholar
  24. McCauley DE (1995) The use of chloroplast DNA polymorphism in studies of geneflow in plants. Trends Ecol Evol 10:198–202PubMedCrossRefGoogle Scholar
  25. Molina-Cano J-L, Russell JR, Moralejo MA, Escacena JL, Arias G, Powell W (2005) Chloroplast DNA microsatellite analysis supports a polyphyletic origin for barley. Theor Appl Genet 110:613–619PubMedCrossRefGoogle Scholar
  26. Ogihara Y, Isono K, Kojima T et al (2000) Chinese spring wheat (Triticum aestivum L.) chloroplast genome: complete sequence and contig clones. Plant Mol Biol Rep 18:243–253CrossRefGoogle Scholar
  27. Oliveira HR (2011) Archaeogenetics and the spread of agriculture in the Iberian Peninsula and Northwest Africa: a study of genetic variation within tetraploid and diploid wheats. PhD dissertation, University of Cambridge, Cambridge, UKGoogle Scholar
  28. Oliveira HR, Jones H, Leigh F, Lister DL, Jones MK, Peña-Chocarro L (2011) Phylogeography of einkorn landraces in the Mediterranean basin and Central Europe: population structure and cultivation history. Archaeol Anthropol Sci 3:327–341CrossRefGoogle Scholar
  29. Peleg Z, Fahima T, Abbo S, Krugman T, Saranga Y (2008) Genetic structure of wild emmer wheat populations as reflected by transcribed versus anonymous SSR markers. Genome 51(3):187–195PubMedCrossRefGoogle Scholar
  30. Peña-Chocarro L (1996) In situ conservation of hulled wheat species: the case of Spain. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats: proceedings of the first international workshop on hulled wheats, 21–22 July 1995, Castelvecchio Pascoli, Tuscany, Italy (promoting the conservation and use of underutilised and neglected crops. 4). IPGRI, RomeGoogle Scholar
  31. Peña-Chocarro L, Zapata L (2003) Post-harvest processing of hulled wheats; an ethnoarchaeological approach. In: Anderson PC, Cummings LS, Schippers TK, B Simonel (eds) Le traitement des recoltes: un regard sur la diversite, du Neolithique au present. XXIII rencontres internationals d’archeologie et d’histoire d’Antibes. Editions APDCA, AntibesGoogle Scholar
  32. Perrier X, Jacquemoud-Collet JP (2006). DARwin software
  33. Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Enfield, Science Publishers, Montpellier, pp 43–76Google Scholar
  34. Pflüger LA, Martín LM, Alvarez JB (2001) Variation in the HMW and LMW glutenin subunits from Spanish accessions of emmer wheat (Triticum turgidum ssp. dicoccum Schrank). Theor Appl Genet 102(5):767–772Google Scholar
  35. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  36. Provan J, Soranzo N, Wilson NJ, Goldstein DB, Powell W (1999) A low mutation rate for chloroplast microsatellites. Genetics 153:943–947PubMedGoogle Scholar
  37. Provan J, Wolters P, Caldwell KH, Powell W (2004) High-resolution organellar genome analysis of Triticum and Aegliops sheds new light on cytoplasm evolution in wheat. Theor Appl Genet 108:1182–1190PubMedCrossRefGoogle Scholar
  38. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149(4):2007–2023PubMedGoogle Scholar
  39. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234PubMedCrossRefGoogle Scholar
  40. Sigaut F (1978) Identification des techniques de decolte des grains alimentaires. Journal d’Agriculture Traditionelle et de Botanique Appliquée 25:145–162Google Scholar
  41. Tereso JP (2009) Plant macrofossils from the Roman settlement of Terronha de Pinhovelo, northwest Iberia. Veg Hist Archaeobot 18:489–501CrossRefGoogle Scholar
  42. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNA. PNAS 84:9054–9058PubMedCrossRefGoogle Scholar
  43. Zapata L (2007) First farmers along the coast of the Bay of Biscay. In: Colledge S, Conolly J (eds) The origins and spread of domestic plants in Southwest Asia and Europe. Left Coast Press, Walnut Creek, CA, pp 189–208Google Scholar
  44. Zapata L, Peña-Chocarro L, Pérez-Jordá G, Stika H-P (2004) Early neolithic agriculture in the Iberian Peninsula. World Prehist 18:283–325CrossRefGoogle Scholar
  45. Zeder MA, Emshwiller E, Smith BD, Bradley DG (2006) Documenting domestication: the intersection of genetics and archaeology. Trends Genet 22(3):139–155PubMedCrossRefGoogle Scholar
  46. Zhang LY, Bernard M, Leroy P, Feuillet C, Sourdille P (2005) High transferability of bread wheat EST-derived SSRs to other cereals. Theor Appl Genet 111:677–687PubMedCrossRefGoogle Scholar
  47. Zilhão J (2000) From the mesolithic to the neolithic in the Iberian Peninsula. In: Price DT (ed) Europe’s first farmers. Cambridge University Press, Cambridge, UK, pp 144–182Google Scholar
  48. Zohary D, Hopf M (2000) Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley. Oxford University PressGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Fiona J. Leigh
    • 1
  • Hugo R. Oliveira
    • 2
    • 3
  • Ian Mackay
    • 1
  • Huw Jones
    • 1
  • Lydia Smith
    • 1
  • Petra Wolters
    • 4
  • Mike Charles
    • 5
  • Martin Jones
    • 2
  • Wayne Powell
    • 6
  • Terence A. Brown
    • 7
  • Glynis Jones
    • 5
  1. 1.NIABCambridgeUK
  2. 2.Department of ArchaeologyUniversity of CambridgeCambridgeUK
  3. 3.IFM - BiologyLinköpings UniversitetLinköpingSweden
  4. 4.Crop Genetics, Dupont Experimental StationWilmingtonUSA
  5. 5.Department of ArchaeologyUniversity of SheffieldSheffieldUK
  6. 6.Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwyth, CeredigionUK
  7. 7.Faculty of Life Sciences, Manchester Interdisciplinary BiocentreUniversity of ManchesterManchesterUK

Personalised recommendations