Genetic Resources and Crop Evolution

, Volume 59, Issue 3, pp 327–345 | Cite as

Morphological characterization of leaf, flower, fruit and seed traits among Brazilian Theobroma L. species

  • Ronaldo Carvalho Santos
  • José Luiz Pires
  • Ronan Xavier Correa
Research Article


Morphological variability of four wild species, one semi-cultivated and one cultivated species of Theobroma L., indigenous to Brazil and introduced in the Bahian cocoa-growing region, was characterized based on 35 quantitative and 13 qualitative traits. T. cacao, which shows a great diversity of conserved germplasm and many published references for morphological characterization, besides of being one of the most cultivated species in Theobroma, was used for comparison as reference species. Sample size was defined for each organ evaluated and individual data set related to leaf, flower, fruit and seed analyzed by a multivariate approach. The studied species showed a large variation for all morphological traits evaluated. T. grandiflorum (Willd. ex Spreng.) Schum. and T. bicolor Humb. et Bonpl. showed the highest means for quantitative variables but were very divergent from each other considering flower and qualitative traits. These were the only species that presented similar number of seeds in comparison with T. cacao. A species with smaller means for most traits was T. obovatum Klotzsch ex Bernoulli. The four wild species show white seeds while T. cacao shows purple ones. Multivariate analysis of variance indicates significant differences between Theobroma species for individual or grouped morphological fruit traits. The results from a cluster analysis were, in a general way, congruent with botanical classification. The statistical analysis performed here was useful to identify a great variability among evaluated traits and to distinguish the most divergent variables from Theobroma species. This work provided an important contribution to morphological characterization of polymorphic traits from different organs of Theobroma species, which can help breeders in the future on the direction of interspecific crosses attempts.


Breeding Cluster and canonical analysis Genetic resources Germplasm Malvaceae Theobroma 



R.C.S. was awarded a Doctoral scholarship from the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) during the accomplishment of this work.


  1. Alverson WS, Whitlock BA, Nyffler R, Bayer C, Baum DA (1999) Phylogeny of the core Malvales: evidence from ndhF sequence data. Am J Bot 86:1474–1486PubMedCrossRefGoogle Scholar
  2. Alves RM, Garcia AAF, Cruz ED, Figueira A (2003) Seleção de descritores botânico-agronômicos para caracterização de germoplasma de cupuaçuzeiro. Pesquisa Agropecuária Brasileira 38:807–818CrossRefGoogle Scholar
  3. Anderson WR (1973) A morphological hypothesis for the origin of heterostyly in the Rubiaceae. Taxon 22:537–542CrossRefGoogle Scholar
  4. Asano Y (1981) Pollen-tube growth in interspecific crosses of Lilium longiflorum Thung (II). J Jpn Hortic Sci 50(3):350–354CrossRefGoogle Scholar
  5. Bartley BGD (2005) The genetic diversity of cacao and its utilization. CABI, WallingfordCrossRefGoogle Scholar
  6. Bekele FL, Bekele I, Butler DR, Bidaisee GG (2006) Patterns of morphological variation in a sample of cacao (Theobroma cacao L.) germplasm from the International Cocoa Genebank, Trinidad. Genet Resour Crop Evol 53:933–948CrossRefGoogle Scholar
  7. Borrone JW, Meerow AW, Kuhn DN, Whitlock BA, Schnell RJ (2007) The potential of the WRKY gene family for phylogenetic reconstruction: an example from the Malvaceae. Mol Phyl Evol 44:1141–1154CrossRefGoogle Scholar
  8. Brar DS (2004) Interspecific hybridization. Crop Sci. doi: 10.1081/E-EPCS-120005682
  9. Brar DS, Khush GS (2002) Transferring genes from wild species into rice. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CAB International, Wallingford, pp 197–217Google Scholar
  10. Castro GCT, Pereira TNS, Carletto GA, Bartley BGD (1989) Caracterização dos recursos genéticos do cacaueiro. III. Flor das seleções CEPEC, EEG, SIAL, BE, MA, RB, CA e CAS. Agrotrópica 1:27–33Google Scholar
  11. Castro-Díez P, Villar-Salvador P, Pérez-Rontomé C, Maestro-Martínez M, Montserrat-Martí G (1997) Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain. Trees 11:127–134Google Scholar
  12. Clement D, Risterucci AM, Motamayor JC, N’Goran J, Lanaud C (2003) Mapping quantitative trait loci for bean traits and ovule number in Theobroma cacao L. Genome 46:103–111PubMedCrossRefGoogle Scholar
  13. Cuatrecasas, JA (1964) Cocoa and its allies: a taxonomic revision of the genus Theobroma, vol 35. Contribution from the United States National Herbarium, Washington, pp 32–46Google Scholar
  14. Dalla Via J, Sturmbauer C, Schonweger G et al. (1998) Light gradients and meadow structure in Posidonia oceanica: ecomorphological and functional correlates. Mar Ecol Prog Ser 163:267–278CrossRefGoogle Scholar
  15. Delaporte KL, Conran JG, Sedgley M (2001) Interspecific hybridization within Eucalyptus (Myrtaceae): subgenus Symphyomyrtus, sections Bisectae and Adnataria. Int J Plant Sci 162(6):1317–1326CrossRefGoogle Scholar
  16. Durham RE, Korban SS (1994) Evidence of gene introgression in apple using RAPD markers. Euphytica 79(1–2):109–114CrossRefGoogle Scholar
  17. Engels JMM (1986) The systematic description of cacao clones and its significance for taxonomy and plant breeding. Ph.D. dissertation, Wageningen Agricultural University, The NetherlandsGoogle Scholar
  18. Engels J, Bartley BGD, Enriquez CGA (1980) Cacao descriptors, their states and modus operandi. Turrialba, Costa Rica. CATIE. Tech Bull 7:196Google Scholar
  19. Enriquez GA, Soria SJ (1967) Seleccion y estúdio de los caracteres utiles de la flor para la identificacion y descricion de cultivares de cacao. Cacao 12:8–16Google Scholar
  20. Fallo J, Cilas C (1998) Etude gèneètique de la granulomètrie des fèves de cacaoyer (Theobroma cacao L.). Relation avec des caractères agronomiques. Plantations, Recherche, Dèveloppement 5:195–200Google Scholar
  21. Gan S, Shi J, Li M, Wu K, Wu J, Bai J (2003) Moderate density molecular maps of Eucalyptus urophylla S.T. Blake and E. tereticornis Smith genomes based on RAPD markers. Genetica 118:59–67PubMedCrossRefGoogle Scholar
  22. Gepts P (2004) Who owns biodiversity, and how should the owners be compensated? Plant Physiol 134:1295–1307PubMedCrossRefGoogle Scholar
  23. Givnish TJ (1987) Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytol 106(Suppl):131–160Google Scholar
  24. Guitián J, Guitián P, Medrano M, Sánchez JM (1999) Variation in floral morphology and individual fecundity in Erythronium dens-canis (Liliaceae). Ecography 22:708–714CrossRefGoogle Scholar
  25. Gutiérrez L, Franco J, Crossa J, Abadie T (2003) Comparing a preliminary racial classification with a numerical classification of the maize landraces of Uruguay. Crop Sci 43:718–727CrossRefGoogle Scholar
  26. Haldane JBS (1938) Heterostylism in natural populations of the Primrose, Primula acaulis. Biometrika 30:196–198Google Scholar
  27. Hammer K (2004) Resolving the challenge posed by agrobiodiversity and plant genetic resources—an attempt. J Agric Rural Dev Tropics Subtropics. Beiheft Nr.76;DITSL, Kassel University Press GmbH, GermanyGoogle Scholar
  28. Hammer K, Khoshbakht K (2005) Towards a”redlist” for crop plant species. Genet Resour Crop Evol 52:249–265CrossRefGoogle Scholar
  29. Hammon S 2001 Genetic resources: towards better understanding, conservation and use. In: Agropolis. Genetic resources genomics and vegetal biotechnology. Internet page: Accessed 12 December 2009
  30. Irish BM, Goenaga R, Zhang D, Schnell R, Brown JS, Motamayor JC (2010) Microsatellite fingerprinting of the USDA-ARS Tropical Agriculture Research Station Cacao (Theobroma cacao L.) germplasm collection. Crop Sci 50:656–667CrossRefGoogle Scholar
  31. Khan N, Motila LA, Sukha DA, Bekel FL, Iwaro AD, Bidaisee GG, Umaharan P, Grierson LH, Zhang D (2008) Variability of butter fat content in cacao (Theobroma cacao L.): combination and correlation with other seed-derived traits at the International Cocoa Genebank, Trinidad. Plant Gen Res Charact and Utiliz 1–12. doi: 10.1017/S1479262108994132
  32. Koorneef M, Stam P (2001) Changing paradigms in plant breeding. Plant Physiol 125:156–159CrossRefGoogle Scholar
  33. Lachenaud P, Bonnot F, Oliver G (1999) Use of floral descriptors to study variability in wild cocoa trees (Theobroma cacao L.) in French Guiana. Genet Resour Crop Evol 46:491–500CrossRefGoogle Scholar
  34. Lange W, Balkema-Boomstra AG (1988) The use of wild species in breeding barley and wheat, with special references to the progenitors of cultivated species. In: Jorna ML, Slootmaker LAJ (comp). Cereal breeding related to integrated cereal production, Pudoc, Wageningen, pp 157–178Google Scholar
  35. Langlade NB, Feng X, Dransfield T, Copsey L, Hanna AI, Thébaud C, Bangham A, Hudson A, Coen E (2005) Evolution through genetically controlled allometry space. Proc Natl Acad Sci USA 102:10221–10226PubMedCrossRefGoogle Scholar
  36. Lee TD, Bazzaz FA (1982) Regulation of fruit and seed production in an annual legume, Cassia fasciculata. Ecology 63:1363–1373CrossRefGoogle Scholar
  37. Lespinasse D, Grivet L, Troispoux V, Rodier-Goud M, Pinard F, Seguin M (2000) Identification of QTLs involved in resistance to South American leaf blight (Microcyclus ulei) in the rubber tree. Theor Appl Genet 100:975–984CrossRefGoogle Scholar
  38. Lexer C, Rosenthal DM, Raymond O, Donovan LA, Rieseberg LH (2005) Genetics of species differences in the wild annual sunflowers, Helianthus annus and H. petiolaris. Genetics 169:2225–2239PubMedCrossRefGoogle Scholar
  39. Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422PubMedGoogle Scholar
  40. Marcano M, Pugh T, Cros E, Morales S, Páez EAP, Courtois B, Glaszmann JC, Engels JMM, Phillips W, Astorga C, Risterucci AM, Fouet O, González V, Rosenberg K, Vallat I, Dagert M, Lanaud C. (2007) Adding value to cocoa (Theobroma cacao L.) germplasm information with domestication history and admixture mapping. Theor Appl Genet. doi:  10.1007/s00122-006-0486-9
  41. Melser C, Klinkhamer PGL (2001) Selective seed abortion increases offspring survival in Cynoglossum officinale (Boraginaceae). Am J of Bot 88:1033–1040CrossRefGoogle Scholar
  42. Mena-Alí JI, Rocha OJ (2005) Selective seed abortion affects the performance of the offspring in Bauhinia ungulata. Ann Bot 95:1017–1023PubMedCrossRefGoogle Scholar
  43. Motamayor J-C, Lanaud C (2002) Molecular analysis of the origin and domestication of Theobroma cacao L. In: Engels JMM, Ramanatha Rao V, Brown AHD, JacksonMT (eds) IPGRI 2002. Managing plant genetic diversity. IPGRI, Rome, pp 77–87Google Scholar
  44. Motamayor JC, Risterucci AM, Lopez PA, Lanaud C (2002) Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity 89:380–386PubMedCrossRefGoogle Scholar
  45. Obute GC, Ndukwu BC, Okoli BE (2006) Cytogenetic studies on some Nigerian species of Solanum L. (Solanaceae). Afr J Biotechnol 5(9):689–692Google Scholar
  46. Ojulong H, Labuschangne M, Herselman L, Fregene M (2008) Introgression of genes for dry matter content from wild cassava species. Euphytica 164(1):163–172CrossRefGoogle Scholar
  47. Orr HA (2001) The genetics of species differences. Trends Ecol Evol 16:343–350CrossRefGoogle Scholar
  48. Ostendorf FW (1954) Flower characteristics as an aid in the identification of cacao clones. Cacao 3(5):3Google Scholar
  49. Peterka H, Budahn H, Schrader O (1997) Interspecific hybrids between onion (Allium cepa L.) with S-cytoplasm and leek (A. ampeloprasum L.). Theor Appl Genet 94:383–389CrossRefGoogle Scholar
  50. Pires JL, Cascardo JCM, Lambert SV, Figueira A (1998) Increasing cocoa butter yield through genetic improvement of Theobroma cacao L.: seed fat content variability, inheritance, and association with seed yield. Euphytica 103:115–121CrossRefGoogle Scholar
  51. Potts BM, Dungey HS (2004) Interspecific hybridization of Eucalyputs: key issues for breeders and geneticists. New Forests 27:115–138CrossRefGoogle Scholar
  52. Ramsey M (1995) Causes and consequences of seasonal variation in pollen limitation of seed production in Blandfordia grandiflora. Oikos 73:49–58CrossRefGoogle Scholar
  53. SAS Institute (2002) SAS user’s guide: statistics. Version 8.2.6.ed. CaryGoogle Scholar
  54. Silva CRS, Figueira A (2005) Phylogenetic analysis of Theobroma (Sterculiaceae) based on Kunitz-like trypsin inhibitor sequences. Plant Syst Evol 250:93–104CrossRefGoogle Scholar
  55. Silva CRS, Venturieri GA, Figueira A (2004) Description of Amazonian Theobroma L. collections, species identification, and characterization of interspecific hybrids. Acta Bot Bras 18(2):333–341CrossRefGoogle Scholar
  56. Soria SJ, Silva P, Chapman RK (1983) Influence of floral pigmentation on filed pollination rates in some cultivated varieties of Theobroma cacao L. Rev Theobroma 13(2):141–150Google Scholar
  57. Srivastava JP, Damania AB (1989) Use of collections in cereal improvement in semi-arid areas. In: Brown AHD et al (eds) The use of plant genetic resources. Cambridge University Press, CambridgeGoogle Scholar
  58. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066PubMedCrossRefGoogle Scholar
  59. Thompson JD (1991) Phenotypic plasticity as a component of evolutionary change. Trends Ecol Evol 6:246–249PubMedCrossRefGoogle Scholar
  60. Valladares F, Brites D (2004) Leaf phyllotaxis: does it really affect light capture? Plant Ecol 174:11–17CrossRefGoogle Scholar
  61. Vanhala TK, van Rijn CPE, Buntjer J, Stam P, Nevo E, Poorter H, van Eeuwijk FA (2004) Environmental, phenotypic and genetic variation of wild barley (Hordeum spontaneum) from Israel. Euphytica 137:297–304CrossRefGoogle Scholar
  62. Venturieri GA (1996) Estimativa da área foliar e do peso de folhas secas de plantas jovens de cupuaçu (Theobroma grandiflorum (Wild. Ex Spreng.) Schum.–Sterculiaceae) por métodos não destrutivos. Acta Amazon 25(1/2):3–10Google Scholar
  63. Whitlock BA, Baum DA (1999) Phylogenetic relationships of Theobroma and Herrania (Sterculiaceae) based on sequences of the nuclear gene Vicilin. Syst Bot 24:128–138CrossRefGoogle Scholar
  64. Yeater KM, Bollero GA, Bullock DG, Rayburn AL, Rodriguez-Zas S (2004) Assessment of genetic variation in hairy vetch using canonical discriminant analysis. Crop Sci 44:185–189CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ronaldo Carvalho Santos
    • 1
    • 2
  • José Luiz Pires
    • 1
  • Ronan Xavier Correa
    • 2
  1. 1.Centro de Pesquisas do Cacau (CEPEC-CEPLAC)IlhéusBrazil
  2. 2.Departamento de Ciências BiológicasUniversidade Estadual de Santa CruzIlhéusBrazil

Personalised recommendations