Genetic Resources and Crop Evolution

, Volume 59, Issue 2, pp 191–204 | Cite as

Wholesale replacement of lima bean (Phaseolus lunatus L.) landraces over the last 30 years in northeastern Campeche, Mexico

  • J. Martínez-Castillo
  • L. Camacho-Pérez
  • J. Coello-Coello
  • R. Andueza-Noh
Research Article


Genetic erosion has been evaluated at the landrace level in the past, principally because the loss of landraces is believed to generate erosion at the allelic level; however, few studies had tested this hypothesis in the crop’s centers of diversity and domestication. Using microsatellite markers, we analyzed for genetic erosion in lima bean (Phaseolus lunatus) landraces over time in samples collected in 1979 and in 2007 in northeast Campeche, in the Yucatan peninsula, Mexico, an important diversity center and part of the putative domestication area for this crop. We found that the lima bean genetic pool from 1979 had a higher genetic diversity than the one for the 2007 pool (Nei’s diversity, H = 0.18 and 0.05, respectively). Although this result could not to be explained using a bottleneck analysis, a cluster analysis showed that the alleles present in 1979 were not the same as those found in 2007, indicating an allelic displacement in the genetic pool of the lima bean landraces in the last 30 years. This displacement could be due to the introduction of improved varieties or landraces, resulting in a displacement of local varieties or to changes in the Mayan criteria for selection of germplasm or both. This study showed that the loss of landraces can generate both quantitative and qualitative changes in the genetic pool of the domesticated species. Such changes are very important to consider when planning ex situ and in situ programs to conserve crop diversity in their domestication areas.


Bottleneck Genetic erosion Lima bean landraces Microsatellite DNA markers Phaseolus lunatus Yucatan peninsula 



This research was done in the Molecular Markers Laboratory of the Department of Natural Resources-CICY. The authors thank Dr. Daniel Debouck (CIAT-Colombia) for his important comments on this article, Filogonio May-Pat and Felix Dzul Tejero for assistance with fieldwork, and Ciencia Básica (CONACyT-México) and Red Frijol (SINAREFI-SAGARPA) for financial support.


  1. Adams REW, Culbert TP (1977) The origins of civilization in the Maya lowlands. In: Adams REW (ed) The origins of Maya civilization. University of New Mexico, Albuquerque, pp 3–34Google Scholar
  2. Almanza-Pinzón MI, Khairallah M, Fox PN, Warburton ML (2003) Comparison of molecular markers and coefficients of parentage for the analysis of genetic diversity among spring bread wheat accessions. Euphytica 130:77–86CrossRefGoogle Scholar
  3. Altieri MA, Montecinos C (1993) Conserving crop genetic resources in Latin America through farmer’s participation. In: Christopher S, Potter DJ, Cohen JI (eds) Perspectives on biodiversity: case studies of genetic resource conservation and development. American Association for the Advancement of Science, Washington, pp 45–64Google Scholar
  4. Arias LM, Latournerie L, Montiel S, Sauri E (2007) Cambios recientes en la diversidad de maíces criollos de Yucatán, México. Universidad y Ciencia 1(23):69–74Google Scholar
  5. Backes G, Hatz B, Jahoor A, Fischbeck G (2003) RFLP diversity within and between major groups of barley in Europe. Plant Breed 122:291–299CrossRefGoogle Scholar
  6. Ballesteros GA (1999) Contribuciones al conocimiento del frijol Lima (Phaseolus lunatus L.) en América Tropical. Ph. D. thesis, Colegio de Posgraduados, Montecillos, Estado de México, MéxicoGoogle Scholar
  7. Barry MB, Pham JR, Beavogui S, Ghesquiere A, Ahmadi N (2008) Diachronic (1979–2003) analysis of rice genetic diversity in Guinea did not reveal genetic erosion. Genet Resour Crop Evol 55:723–733CrossRefGoogle Scholar
  8. Bassam BJ, Anollés GC, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83PubMedCrossRefGoogle Scholar
  9. Baudoin JP, Degreef J, Hardy O, Janart F, Zoro Bi I (1998) Development of an in situ conservation strategy for wild Lima bean (Phaseolus lunatus L.) populations in the central valley of Costa Rica. In: Owens SJ, Rudall PJ (eds) Reproduction biology. Royal Botanic Garden Press, Kew, pp 417–426Google Scholar
  10. Baur E (1914) Die Bedeutung der primitiven Kulturrassen und der wilden Verwandten unserer Kulturpflanzen für die pflanzenzüchtung. Jahrbuch der Deutschen Landwirtschafts Gesellschaft 29:104–110Google Scholar
  11. Bellon MR, Taylor JE (1993) Farmer soil taxonomy and technology adoption. Econ Dev Cult Change 41:764–786.Google Scholar
  12. SB (1991) A farmer-based approach to conservation crop germplasm. Econ Bot 45:153–165Google Scholar
  13. Colunga-GarcíaMarín P, Zizumbo-Villarreal D (2007) Tequila and other Agave spirits from west-central Mexico. Current germplasm diversity, conservation and origin. Biodivers Conserv 16(16):1653–1667CrossRefGoogle Scholar
  14. de la Cuanalo HEC, Arias LM (1997) Cultural and economic factors that affect farmers decision-making in Yucatan, Mexico. In: Jarvis DI, Hodgkin T (eds) Strengthening the scientific basis of in situ conservation of agricultural biodiversity on-farm. Options for data collecting and analysis. IPGRI, Rome, p 14Google Scholar
  15. Debouck DG (1979) Proyecto de recolección de germoplasma de Phaseolus en México. CIAT-INIA, Centro Internacional de Agricultura Tropical (CIAT), ColombiaGoogle Scholar
  16. Donini P, Law LR, Koebner RMD, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100:912–917CrossRefGoogle Scholar
  17. Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  18. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distance among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  19. FAO (1996) ‘The State of the World’s Plant Genetic Resources: Diversity and Erosion’. Third World Resurgence. Farmers’ Rights and the Battle for Agrobiodiversity. Issue No. 72/73 KDN PP6738/1/96. An excerpt from the Report on the State of the World’s Plant Genetic Resources prepared by the FAO Secretariat for the International Technical Conference on Plant Genetic Resources at Leipzig, Germany, 17–23 June 1996Google Scholar
  20. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  21. Frankel OH, Bennett E (1970) Genetic resources in plants-their exploration and conservation. IBP Handbook No. 11. Blackwell Scientific Publications, OxfordGoogle Scholar
  22. Gaitán-Solís E, Duque MC, Edwards KJ, Tohme J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris): isolation, characterization, and cross-species amplification in Phaseolus ssp. Crop Sci 42:2128–2136CrossRefGoogle Scholar
  23. Gao L (2003) The conservation of Chinese rice biodiversity: genetic erosion, ethnobotany and prospects. Genetic Resour Crop Evol 50:17–32CrossRefGoogle Scholar
  24. Gómez-Campo C (2006) Erosion of genetic resources within seed banks: the role of seed containers. Seed Sci Res 16:291–294CrossRefGoogle Scholar
  25. Guerrant EO (1992) Genetic and demographic considerations in the sampling and reintroduction of rare plants. In: Fiedler PL, Jain SK (eds) Conservation biology: the theory and practice of nature conservation, preservation, and management. Routledge, Champan and Hall, Inc., New York (NY), pp 321–344Google Scholar
  26. Gutiérrez-Salgado A, Gepts P, Debouck DG (1995) Evidence for two gene pools of the Lima beans (Phaseolus lunatus L.) in the Americas. Genet Resour Crop Evol 42:15–28Google Scholar
  27. Hammer K, Laghetti G (2005) Genetic erosion—examples from Italy. Genet Resour Crop Evol 52:629–634CrossRefGoogle Scholar
  28. Harlan JR (1965) The possible role of weedy races in the evolution of cultivated plants. Euphytica 14:173–176CrossRefGoogle Scholar
  29. Harlan JR, de Wit JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517CrossRefGoogle Scholar
  30. Haugen JM (2001) Whatever the will the weather: a study of seed systems in Honduras, and their importante for food security ans argobiodiversity in the aftermaths of hurricane Micth. Thesis Agric. Degree, Agricultural University of NorwayGoogle Scholar
  31. Hernández FC, Delgado A (1992) Recursos genéticos de frijoles en el oriente de Yucatán. In: Zizumbo D, Rasmussen C, Arias LM, Terán S (eds) La modernización de la milpa en Yucatán: utopía o realidad. CICY-DANIDA, Mérida, pp 147–160Google Scholar
  32. Hernández-Xolocotzi E (1992) Racionalidad tecnológica del sistema de producción agíıcola de roza-tumba-quema en Yucatán. In: Zizumbo-Villarreal D, Ramussen C, Arias-Reyes LM, Terán S (eds) La modernización de la milpa en Yucatán: utopía o realidad. CICY-DANIDA, Mérida, pp 187–194Google Scholar
  33. Jarvis DI, Hodgkin T (1999) Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agroecosystems. Mol Ecol 8:S159–S173CrossRefGoogle Scholar
  34. Jarvis DI, Myer L, Klemick H, Guarino H, Smale M, Brown AHD (2000) A training guide for in situ conservation on-farm. Version 1. International Plant Genetic Resources Institute, RomeGoogle Scholar
  35. Khlestkina EK, Huang XQ, Quenum FJB, Chebotar S, Röder MS, Börner A (2004) Genetic diversity in cultivated plants—loss or stability? Theor Appl Genet 108:1466–1472PubMedCrossRefGoogle Scholar
  36. Koebner RMD, Donini P, Reeves JC (2003) Temporal flux in the morphological and molecular diversity of UK barley. Theor Appl Genet 106:550–558PubMedGoogle Scholar
  37. Ku-Naal R (1995) Cambios técnicos en la milpa bajo roza-tumba-quema en Yaxcabá, Yucatán. In: Hernández XE, Bello BE, Levy TS (eds) La milpa en Yucatán: Un sistema de producción agrícola tradicional. Colegio de Postgraduados, México, pp 401–418Google Scholar
  38. Le Clerc V, Bazante F, Baril C, Guiard J, Zhang D (2005) Assessing temporal change in genetic diversity of maize varieties using microsatellite markers. Theor Appl Genet 110:294–302PubMedCrossRefGoogle Scholar
  39. Lu H, Bernardo R (2001) Molecular marker diversity among current and historical maize inbreds. Theor Appl Genet 103:613–617CrossRefGoogle Scholar
  40. Luikart G, Cornuet JM (1997) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237Google Scholar
  41. Luikart GL, Allendrof FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247PubMedCrossRefGoogle Scholar
  42. Maccaferi M, Sanguinetti MC, Donini P, Tuberosa R (2003) Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet 107:783–797CrossRefGoogle Scholar
  43. Mantegazza R, Biloni M, Grassi F, Basso B, Lu BR, Cai XX, Sala F, Spada A (2008) Temporal trends of variation in Italian rice germplasm over the past two centuries revealed by AFLP and SSR markers. Crop Sci 48:1832–1840CrossRefGoogle Scholar
  44. Maras M, Susnik S, Sustar-Vozlic J, Meglic V (2006) Temporal changes in genetic diversity of common bean (Phaseolus vulgaris L.) accessions cultivated between 1800 and 2000. Russ J Genet 42(7):775–782CrossRefGoogle Scholar
  45. Martínez-Castillo J, Zizumbo-Villarreal D, Perales-Rivera H, Colunga-GarcíaMarín P (2004) Intraspecific diversity and morpho-phenological variation in Phaseolus lunatus L. from the Yucatan Peninsula, México. Econ Bot 58(3):354–380CrossRefGoogle Scholar
  46. Martínez-Castillo J, Zizumbo-Villarreal D, Gepts P, Delgado-Valerio P, Colunga-GarcíaMarín P (2006) Structure and genetic diversity of wild populations of Lima Bean (Phaseolus lunatus L.) from the Yucatan Peninsula, Mexico. Crop Sci 46:1071–1080CrossRefGoogle Scholar
  47. Martínez-Castillo J, Zizumbo-Villarreal D, Gepts P, Colunga-GarcíaMarín P (2007) Gene flow and genetic structure in the wild-weedy-domesticated complex of Lima bean (Phaseolus lunatus L.) in its Mesoamerican center of domestication and diversity. Crop Sci 47:58–66CrossRefGoogle Scholar
  48. Martínez-Castillo J, Colunga-GarcíaMarín P, Zizumbo-Villarreal D (2008) Genetic erosion and in situ conservation of Lima bean (Phaseolus lunatus L.) landraces in its Mesoamerican diversity center. Genet Resour Crop Evol 55:1065–1077CrossRefGoogle Scholar
  49. Miller MP (1997) Tools for population genetic analysis (TFPGA) 1. 3: a windows program for the analysis of allozyme and molecular population genetic data. Distributed by the authorGoogle Scholar
  50. Motta-Aldana JR, Serrano-Serrano M, Hernandez-Torres J, Castillo-Villamizar G, Debuck DG, Chacon MI (2010) Multiple origins of lima bean landraces in the Americas: evidence from chloroplast and nuclear DNA polymorphisms. Crop Sci 50(5):1773Google Scholar
  51. Nei M (1972) Genetic distance between populations. Am Nat 106(949):283–292CrossRefGoogle Scholar
  52. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323PubMedCrossRefGoogle Scholar
  53. Parzies HK, Spoor W, Ennos RA (2000) Genetic diversity of barley landraces accessions (Hordeum vulgaris ssp. vulgare) conserved for different lengths of time in ex situ gene banks. Heredity 84:476–486PubMedCrossRefGoogle Scholar
  54. Petersen L, Ostergard H, Giese H (1994) Genetic diversity among wild and cultivated barley as revealed by RFLP. Theor Appl Genet 89:676–681CrossRefGoogle Scholar
  55. Quirós CF, Ortega R, Van Raamsdonk LWD (1992) Amplification of potato genetic resources in their center of diversity: the role of natural outcrossing and selection by the Andean farmer. Genet Resour Crop Evol 39:107–113Google Scholar
  56. Reyes GD, Aguilar G (1992) Intensificación de la milpa en Yucatá. In: Zizumbo-Villarreal D, Ramussen C, Arias-Reyes LM, Terán S (eds) La modernización de la milpa en Yucatán: utopía o realidad. CICY-DANIDA, Mérida, México, pp 347–358Google Scholar
  57. Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108:920–930PubMedCrossRefGoogle Scholar
  58. Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, SwitzerlandGoogle Scholar
  59. Serrano-Serrano ML, Hernández-Torres J, Castillo-Villamizar G, Debouck DG, Chacón MI (2010) Gene pools in wild lima bean (Phaseolus lunatus L.) from the Americas: evidences for an Andean origin and past migrations. Mol Phylogenet Evol 54:76–87Google Scholar
  60. Sherwin WB, Moritz C (2000) Managing and monitoring genetic erosion. In: Young AG, Clarke GM (eds) Genetics, demography and viability of fragment populations, vol 4. Cambridge Univ Press, Cambridge, pp 9–34Google Scholar
  61. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792PubMedCrossRefGoogle Scholar
  62. Stebbins GL (1959) The role of hybridization in evolution. Proc Am Phil Soc 103:231–251Google Scholar
  63. Struss D, Plieske J (1998) The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet 97:308–315CrossRefGoogle Scholar
  64. Tsegaye B, Berg T (2006) Genetic erosion of Ethiopian tetra-ploid wheat landraces in Eastern Shewa, Central Ethiopia. Genet Resour Crop Evol 54(4):715–726Google Scholar
  65. Upadhyay MP, Sthapit BR (1998) Plant genetic resource conservation programs in Nepal: some proposals for scientific basis of in situ conservation of agrobiodiversity. In: Paper presented on the strengthening the scientific basis of in situ conservation of crop gene pools, from 17–19 July in Rome, Italy, IPGRIGoogle Scholar
  66. van de Wouw M, Kik C, van Hintum T, van Treuren R, Visser B (2010) Genetic erosion in crops: concept, research results and challenges. Plant Genet Resour 8:1–15Google Scholar
  67. Vargas-Ponce O, Zizumbo-Villarreal D, Colunga-GarcíaMarín P (2007) In situ diversity and maintenance of traditional Agave landraces used in spirits production in west-central, Mexico. Econ Bot 61(4):362–375CrossRefGoogle Scholar
  68. Wright S (1978) Evolution and the genetics of populations, vol IV. Variability within and among natural populations. University of Chicago Press, ChicagoGoogle Scholar
  69. Xiu-Qiang H, Wolf M, Ganal MW, Orford S, Koebner RMD, Röder MS (2007) Did modern plant breeding lead to genetic erosion in European winter wheat varieties? Crop Sci 47:343–349CrossRefGoogle Scholar
  70. Yeh FC, Boyle TJB (1999) Popgene version 1.31. Microsoft Windows-based freeware for population analysis. University of Alberta and Centre for International Forestry Research, EdmontonGoogle Scholar
  71. Zizumbo-Villarreal D (1992) Conclusiones Mesa Redonda La modernización de la milpa en Yucatán: utopía o realidad. In: Zizumbo-Villareal D, Ramussen C, Arias-Reyes LM, Terán S (eds) La modernización de la milpa en Yucatán: utopía o realidad. CICY-DANIDA, Mérida, Yucatán, México, pp 371–378Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • J. Martínez-Castillo
    • 1
  • L. Camacho-Pérez
    • 1
  • J. Coello-Coello
    • 1
  • R. Andueza-Noh
    • 1
  1. 1.Centro de Investigación Científica de Yucatán (CICY)MéridaMéxico

Personalised recommendations