Advertisement

Genetic Resources and Crop Evolution

, Volume 58, Issue 6, pp 933–942 | Cite as

Relationships among Crataegus accessions sampled from Hatay, Turkey, as assessed by fruit characteristics and RAPD

  • S. Serçe
  • Ö. Şimşek
  • C. Toplu
  • Ö. Kamiloğlu
  • O. Çalışkan
  • K. Gündüz
  • M. Özgen
  • Y. A. Kaçar
Research Article

Abstract

The genus Crataegus known as hawthorns, is the largest genus among the Maloideae, which comprises 265 species. Turkey is one of the genetic centers of Crataegus and there are more than 20 species found in Turkey. The fruits of Crataegus are used as food and have high flavonoid, vitamin C, glycoside, anthocyanidin, saponin, tannin, and antioxidant levels. In this study, we attempted to characterize 15 Crataegus accessions sampled from Hatay, located in Eastern Mediterranean region of Turkey. The accessions belonged to several species; C. aronia (L.) DC. var. aronia, C. aronia var. dentata Browicz, C. aronia var. minuta Browicz, C. monogyna Jacq. subsp. azarella (Griseb.) Franco, and C. orientalis Pall. ex M. Bieb. var. orientalis. Fruit characteristics of the accessions exhibited considerable variation. The multivariate, principle component and cluster analyses indicated that the accessions belonged to three groups: (1) C. aronia var. arona accessions; (2) C. aronia var. dentata accessions; and, (3) C. monogyna subsp. azarella and C. orientalis var. orientalis accessions. The principle component analysis results also revealed that the first three components explained 46, 21, and 14% of the variation, comprising a total of 81%. The fruit length and width, leaf area, and soluble solids contents were highly correlated characteristics for the first three components. The 19 RAPD primers generated a total of 107 bands, where 76 of these were polymorphic. The molecular data analyses by principle coordinate and clustering showed similar results to those of pomological characteristics. There were three groups, (1) C. aronia var. arona accessions; (2) C. aronia var. dentata accession; and, (3) C. monogyna subsp. azarella. C. orientalis var. orientalis accession grouped with C. aronia var. arona accessions. Therefore, it can be concluded that, overall, the diversity patterns of pomological and molecular data, generated by RAPD, for Crataegus are in good agreement and the accessions of C. aronia var. aronia, C. aronia var. minuta, C. monogyna subsp. azarella and C. orientalis var. orientalis accessions.

Keywords

Crataegus aronia C. monogyna C. orientalis Genetic resources Germplasm Hawthorn 

Notes

Acknowledgments

We gratefully acknowledge the financial supports from the Scientific and Technological Council of Turkey (TOVAG-107O904).

References

  1. Albarouki E, Peterson A (2007) Molecular and morphological characterization of Crataegus L. species (Rosaceae) in southern Syria. Bot J Linn Soc 153:255–263CrossRefGoogle Scholar
  2. Asma BM, Birhanlı O (2003) Selection studies of wild growing hawthorns around Malatya. IV. In: Turkish National Horticultural Symposium, 08–12 September, Antalya, pp 61–62Google Scholar
  3. Badenes M, Garces A, Romero C, Romero M, Clave J, Rovira M, Llacer G (2003) Genetic diversity of introduced and local Spanish persimmon cultivars revealed by RAPD markers. Genet Resour Crop Evol 50:579–585CrossRefGoogle Scholar
  4. Browicz K (1972) Crataegus. In: Davis PH (ed) Flora of Turkey and the East Aegean Islands. No 22, Edinburg Univ. Press, EdinburgGoogle Scholar
  5. Chang Q, Zuo Z (2002) Hawtorn. J Clin Pharmacol 42:605–612PubMedCrossRefGoogle Scholar
  6. Christensen KI (1992) Revision of Crataegus sect. Crataegus and Nothosect. Crataeguineae (Rosaceae-Maloideae) in the Old World. Syst Bot Monogr 35:1–199CrossRefGoogle Scholar
  7. Dellaporta SL, Wood J, Hich JB (1983) A plant DNA mini-preparation: version 2. Plant Mol Biol Rep 1:19–22CrossRefGoogle Scholar
  8. Demiray H (1986) C. monogyna subsp. monogyna Jacq. ve C. pentagyna W. et K. üzerine morfolojik ve anatomik araştırmalar. Doğa TUBITAK Bioloji Dergisi 10:305–315Google Scholar
  9. Dickinson TA, Campbell CS (1991) Population structure and reproductive ecology in the Maloideae (Rosaceae). Syst Bot 16:350–362CrossRefGoogle Scholar
  10. Dickinson TA, Lo E, Talent N (2007) Polyploidy, reproductive biology, and Rosaceae: understanding evolution and making classifications. Plant Syst Evol 266:59–78CrossRefGoogle Scholar
  11. Dönmez AA (2004) The genus Crataegus L. (Rosaceae) with special reference to hybridisation and biodiversity in Turkey. Turkish J Bot 28:29–37Google Scholar
  12. Dönmez AA (2005) A new species of Crataegus (Rosaceae) from Turkey. Bot J Linn Soc 148:245–249CrossRefGoogle Scholar
  13. Dönmez AA (2007) Taxonomic note on the genus Crataegus (Rosaceae) in Turkey. Bot J Linn Soc 155:231–240CrossRefGoogle Scholar
  14. Ellsworth DL, Rittenhouse KD, Honeycutt RL (1993) Artifactual variation in randomly amplified polymorphic DNA banding patterns. Biotechniques 14:214–216PubMedGoogle Scholar
  15. Ercsili S (2004) A short review of the fruit germplasm resources of Turkey. Genet Resour Crop Evol 51:419–435CrossRefGoogle Scholar
  16. Evans RC, Campbell CS (2002) The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Am J Bot 89:1478–1484PubMedCrossRefGoogle Scholar
  17. Ganino T, Beghe D, Alenti S, Nisi R, Fabbri A (2007) RAPD and SSR markers for characterization and identification of ancient cultivars of Olea europaea L. in the Emilia region, Northern Italy. Genet Resour Crop Evol 54:1531–1540CrossRefGoogle Scholar
  18. Guitia'n P (1998) Latitudinal variation in the fruiting phenology of a bird-dispersed plant (Crataegus monogyna) in Western Europe. Plant Ecol 137:139–142CrossRefGoogle Scholar
  19. Guo T, Jiao P (1995) Hawthorn (Crataegus) resources in China. HortScience 30:1132–1134Google Scholar
  20. Hokanson SC (2001) SNiPs, chips, BACs, and YACs: Are small fruits part of the party mix? Hortscience 36:859–871Google Scholar
  21. Judd WS, Campbell CS, Kellogg EA, Stevens PF (1999) Plant systematics. Aphylogenetic approach. Sinauer Associates, Inc., SunderlandGoogle Scholar
  22. Lippert W (1995) Crataegus. In: Hegi G, Conert HJ, Scholz H (eds) Illustrierte Flora von Mitteleuropa. Band 4. Angiospermae-Dicotyledones 2.-(3), 2nd edn. Blackwell Wissenschafts-Verlag, Berlin, pp 426–445Google Scholar
  23. Ljubuncic P, Portnaya I, Cogan U, Azaizeh H, Bomzon A (2005) Antioxidant activity of Crataegus aronia aqueous extract used in traditional Arab medicine in Israel. J Ethnopharmacol 101:153–161PubMedCrossRefGoogle Scholar
  24. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:175–178Google Scholar
  25. Orhan E, Ercisli S, Yidirim N, Agar G (2007) Genetic variations among mulberry genotypes (Morus alba) as revealed by random amplified polymorphic DNA (RAPD) markers. Plant Syst Evol 265:251–258CrossRefGoogle Scholar
  26. Özcan M, Hacıseferoğulları H, Marakoğlu T, Arslan D (2005) Hawthorn (Crataegus spp.) fruit: some physical and chemical properties. J Food Eng 69:409–413CrossRefGoogle Scholar
  27. Phipps JB (2005) A review of hybridization in north American hawthorns—another look at ‘the Crataegus problem’. Ann Mo Bot Gard 92:113–126Google Scholar
  28. Phipps JB, Robertson KR, Rohrer JR, Smith PG (1991) Origins and evaluation of Subfam. Maloideae (Rosaceae). Syst Bot 16:303–332CrossRefGoogle Scholar
  29. Rohlf FJ (1998) NTSYS-Pc, numerical taxonomy and multivariate analysis system. Version 2.00. Exeter software, SetauketGoogle Scholar
  30. SAS Institute Inc. (2005) SAS Institute Inc., SAS User Guide; SAS/STAT. SAS Inst. Inc., CaryGoogle Scholar
  31. Schussler M, Hölzl J (1995) Myocardial effects of flavonoids from Crataegus species. Arzneimittel-Forschung 45:842–845PubMedGoogle Scholar
  32. Swofford DL (1998) PAUP: phylogenetic analysis using parsimony (and other methods). Version 4. Sineauer Assoc, SunderlandGoogle Scholar
  33. Taamalli W, Geuna F, Banth R, Bassi D, Daoud D, Zarrouk M (2006) Agronomic and molecular analyses for the characterisation of accessions in Tunisian olive germplasm collections. Electron J Biotechnol 9:467–481CrossRefGoogle Scholar
  34. Takeda T, Shimada T, Nomura K, Ozaki T, Haji T, Yamaguchi M, Yoshida M (1998) Classification of apricot varieties by RAPD analysis. J Jap Soci Horticul Sci 67:21–27CrossRefGoogle Scholar
  35. Türkoğlu N, Kazankaya A, Sensoy RI (2005) Pomological characteristics of hawthorn species found in Van Region. Tarım Bilimleri Dergisi 15:17–21Google Scholar
  36. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1990) Flora Europaea 2. Cambridge University Press, Cambridge, pp 73–77Google Scholar
  37. Williams CE, Clair DA (1993) Phylogenetic relationships and level of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome 36:613–630CrossRefGoogle Scholar
  38. Zamani Z, Sarkhosh A, Fatahi R, Ebadi A (2007) Genetic relationships among pomegranate genotypes studied by fruit characteristics and RAPD markers. J Hortic Sci Biotechnol 82:11–18Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • S. Serçe
    • 1
  • Ö. Şimşek
    • 2
  • C. Toplu
    • 1
  • Ö. Kamiloğlu
    • 1
  • O. Çalışkan
    • 1
  • K. Gündüz
    • 1
  • M. Özgen
    • 3
  • Y. A. Kaçar
    • 2
    • 4
  1. 1.Department of Horticulture, Faculty of AgricultureMustafa Kemal UniversityAntakya, HatayTurkey
  2. 2.Biotechnology Department, Institute of Basic and Applied ScienceÇukurova UniversityAdanaTurkey
  3. 3.Department of Horticulture, Faculty of AgricultureGaziosmanpaşa UniversityTaşlıçiftlik, TokatTurkey
  4. 4.Department of Horticulture, Faculty of AgricultureÇukurova UniversityAdanaTurkey

Personalised recommendations