Genetic Resources and Crop Evolution

, Volume 58, Issue 6, pp 805–814 | Cite as

Set up of simple sequence repeat markers and first investigation of the genetic diversity of West-African watermelon (Citrullus lanatus ssp. vulgaris oleaginous type)

  • L.-A. Minsart
  • I. A. Zoro bi
  • Y. Djè
  • J.-P. Baudoin
  • A.-L. Jacquemart
  • P. Bertin
Research Article


Citrullus lanatus ssp. vulgaris oleaginous type (West-African watermelon) is a crop cultivated in sub-Saharan Africa for its dried seeds reported to be rich in nutrients. In previous studies, little polymorphism was found in watermelon—cultivated for its flesh with the use of microsatellite (SSR) markers. Such study has never been applied to the oleaginous type until now. The objectives of the present study were firstly to apply the SSR markers set up for watermelon to the West-African watermelon and secondly to study the genetic structure of this type in Ivory Coast. For the first objective, 37 markers were studied on eight plants pertaining to four accessions. For the second objective, the polymorphic markers were applied on three morphologically and geographically separated accessions with twenty plants per accession. Multiple correspondence analysis (MCA), unweighted pair-group method with arithmetic averaging (UPGMA), molecular analysis of variance (AMOVA) and assignments test structure were applied. The optimal annealing temperature varied from 49 to 59°C according to the markers. Thirty-two markers that proved to amplify their respective loci were selected, but only nine of them appeared to show polymorphism on the set of 8 plants studied. The application of these markers on the three accessions revealed several features. No stucturation into sub-populations was observed inside a given accession. The genetic variance proved to be substantially higher between the different accessions than inside a given accession. Moreover this analysis is a first hint that the morphology classification does not match the genetic structure of C. lanatus. The results of this work provide the first quantitative information regarding the genetic variability of Citrullus lanatus oleaginous type. In order to sharpen our understanding of the mechanisms responsible for the genetic variance inter/intra accessions, further studies based on a larger sample of plants and accessions are required.


African watermelon Citrullus lanatus oleaginous type Cucurbits Egusi Genetic diversity Ivory Coast MCA SSR 



This research was supported by the FSR (Fonds Spéciaux de Recherche, UCL) and by the FRIA (Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture, Belgium). We are grateful to P. Baret (UCL) and X. Draye (UCL) for their advice during the proofreading of this paper.


  1. Bowcock AM, Ruiz-Linares A, Tomforhde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Lett Nat 368:454–455CrossRefGoogle Scholar
  2. Dane F, Liu J (2007) Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genet Resour Crop Evol 54:1255–1265CrossRefGoogle Scholar
  3. Djè Y, Tahi GC, Zoro Bi IA, Malice M, Baudoin J-P, Bertin P (2006) Optimization of ISSR markers for African edible-seeded Cucurbitaceae species genetic diversity analysis. Afr J Biotechnol 5:83–87Google Scholar
  4. Ducarme V, Risterucci AM, Wesselingh RA (2008) Development of microsatellite markers in Rhinanthus angustifolius and cross-species amplification. Mol Ecol Resour 8:384–386PubMedCrossRefGoogle Scholar
  5. Ferreira MAJ, Vencovsky R, Vieira MLC, de Queiróz MA (2000) Outcrossing rate and implications for the improvement of a segregating population of watermelon. Acta Hortic 510:47–54Google Scholar
  6. Guerra-Sanz J (2002) Citrullus simple sequence repeats markers from sequence databases. Mol Ecol Notes 2:223–225CrossRefGoogle Scholar
  7. Gusmini G (2005) Inheritance of fruit characteristics and disease resistance in watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai]. PhD thesis, Graduate Faculty of North Carolina State UniversityGoogle Scholar
  8. Gusmini G, Wehner T (2003) Polygenic inheritance of some vine traits in two segregating watermelon families. Cucurbit Genet Coop Rep 26:32–35Google Scholar
  9. Gusmini G, Wehner T, Jarret R (2004) Inheritance of egusi seed type in watermelon. J Hered 95:268–270PubMedCrossRefGoogle Scholar
  10. Jarret R, Merrick L, Holms T, Evans J, Aradhya M (1997) Simple sequence repeats in watermelon Citrullus lanatus (Thunb.) Matsum. & Nakai. Genome 40:433–441PubMedCrossRefGoogle Scholar
  11. Joobeur T, Zhang X, Xu Y, Wehner T, Gusmini G, Levi A, Oliver M, Dean R (2006) Construction of a watermelon BAC library and identification of SSRs anchored to melon or Arabidopsis genomes. Theor Appl Genet 112:1553–1562PubMedCrossRefGoogle Scholar
  12. Kwon Y-S, Park EK, Lee W-S, Yi S-I, Bae K-M, An J-S, Kim H-Y (2007) Genetic assessment of watermelon (Citrullus lanatus) varieties using SSR markers developed from Cucurbit species. Korean J Genet 29:137–146Google Scholar
  13. Levi A, Thomas CE (1999) An improved procedure for isolation of high quality DNA from watermelon and melon leaves. Cucurbit Genet Coop Rep 22:41–42Google Scholar
  14. Levi A, Thomas C, Wehner T, Zhang X (2001) Low genetic diversity indicates the need to broaden the genetic basis of cultivated watermelon. Hortic Sci 36:1096–1101Google Scholar
  15. Loehrlein M, Ray DT (2007) Triploid and tetraploid watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) seed size and weight. Cucurbit Genet Coop Rep 22:34–37Google Scholar
  16. Loukou A, Gnakri D, Djè Y, Kippré A, Malice M, Baudoin J-P, Zoro Bi IA (2007) Macronutrient composition of three cucurbit species cultivated for seed consumption in Côte d’Ivoire. Afr J Biotechnol 6:529–533Google Scholar
  17. Merrick LC (1998) Cucurbits. Crop production science in horticulture. In Austin DF, Harriman NA, Johns T, Steinberg MK, Ugarte CA, Eich E, Forstner MRJ, Collins DA, Bedigian D, Leonard K, Lizarralde M. Book reviews. Econ Bot 52:428–440CrossRefGoogle Scholar
  18. Minch E, Ruiz-Linares A, Goldstein D, Feldman M, Cavalli-Sforza LL (1995) MICROSAT Version 1.4d: a computer program for calculating various statistics on microsatellite allele data.
  19. Navot N, Zamir D (1987) Isozyme and seed protein phylogeny of the genus Citrullus (Cucurbitaceae). Plant Syst Evol 156:61–67CrossRefGoogle Scholar
  20. Pissard A, Arbizu C, Ghislain M, Faux A-M, Paulet S, Bertin P (2008) Congruence between morphological and molecular markers inferred from the analysis of the intra-morphotype genetic diversity and the spatial structure of Oxalis tuberosa Mol. Genetica 132:71–85PubMedCrossRefGoogle Scholar
  21. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238CrossRefGoogle Scholar
  22. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  23. Raymond M, Rousset F (1995) Genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 96:248–250Google Scholar
  24. Ritschel PS, de Lima Lins TS, Tristan RL, Cortopassi Buso GS, Buso JA, Ferreira ME (2004) Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.). BMC Plant Biol 4:9PubMedCrossRefGoogle Scholar
  25. Tahi GC (2006) Genetic structure of African edible seeds Citrullus lanatus (Thunberg) Matsumara & Nakai var. citroides using ISSR molecular markers. Master’s thesis, Université catholique de Louvain, Faculté d’ingénierie biologique, agronomique et environnementaleGoogle Scholar
  26. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  27. Zoro Bi IA, Koffi K, Djè Y (2003) Caractérisation botanique et agronomique de trois espèces de cucurbites consommées en sauce en Afrique de l’ouest : Citrullus sp., Cucumeropsis mannii Naudin et Lagenaria siceraria (Molina) Standl. Biotechnology, Agronomy. Soc Environ 7:189–199Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • L.-A. Minsart
    • 1
  • I. A. Zoro bi
    • 2
  • Y. Djè
    • 2
  • J.-P. Baudoin
    • 3
  • A.-L. Jacquemart
    • 4
  • P. Bertin
    • 1
  1. 1.Unité d’écophysiologie et d’amélioration végétaleUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Unité de Formation et de Recherche des Sciences de la NatureUniversité d’Abobo-AdjaméAbidjan 02Ivory Coast
  3. 3.Faculté universitaire des Sciences agronomiques de GemblouxUnité de Phytotechnie tropicale et d’HorticultureGemblouxBelgium
  4. 4.Unité de génétique, populations et reproductionUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations