Genetic Resources and Crop Evolution

, Volume 57, Issue 6, pp 867–880 | Cite as

Molecular markers for promoting agro-biodiversity conservation: a case study from Italy. How cowpea landraces were saved from extinction

Research Article


Landraces (LRs) are crop populations that are locally grown by farmers; they have a strategic role to play in rebuilding healthy and complex agro-ecosystems, but are at risk of extinction. This paper outlines how some LRs were rescued with the support of modern techniques such as molecular markers. Cowpea LRs from Umbria, Italy, were initially characterized for morphological, organoleptic and genetic traits and reintroduced among farmers. These activities led to an expansion of the area under LR based cowpea cultivation and increased farmers’ income. To encourage further LR cultivation a request for the Protected Designation of Origin (PDO) status has been promoted. Investigations were carried out to determine if it is possible to certify that the product actually belongs to the traditional agricultural and cultural context of the cultivation area. The genetic diversity and phylogenetic relationships among local LRs, other LRs, commercial varieties, and other taxa were investigated with five AFLP markers. Although genetic diversity is limited, genetic analysis showed that Umbrian cowpea LRs can be distinguished from commercial varieties, LRs from abroad and other taxa. There is a tight phylogenetic connection among Umbrian LRs. These data confirmed the available historical and sociological data and were included in the PDO specification. AFLP markers can be used to monitor the origin of seed lots that are on the market; this protects the rights of both consumers and farmers. This case study could be a resource for planning activities for the future on-farm conservation of other LRs in different countries.


Genetic diversity and distinctness Landraces On-farm conservation Social-economic factors 



The Regione dell’Umbria, Ente Parco del Trasimeno and Parco Tecnologico Agroalimentare funded this work. The International Institute for Tropical Agriculture (IITA) kindly donated some of the extra European accessions examined in this study. Thanks are due to Dr. Paola Taviani for technical assistance in the first phase of the work.


  1. Apicius (2005) De re coquinaria. Librorum X qui dicuntur de re coquinaria. The Project Gutenberg, EBook n. 16439, available via DIALOG. Accessed 06 Nov 2009
  2. Asfaw Z (2000) The barleys of Ethiopia. In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. IPGRI, Rome, pp 77–107Google Scholar
  3. Ba FS, Pasquet R, Gepts P (2004) Genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] as revealed by RAPD markers. Genet Resour Crop Evol 51:539–550. doi: 10.1023/B:GRES.0000024158.83190.4e CrossRefGoogle Scholar
  4. Bellon MR (1996) The dynamics of crop infraspecific diversity: a conceptual framework at the farmer level. Econ Bot 50:26–39Google Scholar
  5. Boyce RL, Ellison PC (2001) Choosing the best similarity index when performing fuzzy set ordination on binary data. J Veg Sci 12:711–720. doi: 10.2307/3236912 CrossRefGoogle Scholar
  6. Brush SB (1992) Ethnoecology, biodiversity and modernization in Andean potato agriculture. J Ethnobiol 12:161–185Google Scholar
  7. Brush SB (1995) In situ conservation of landraces in centers of crop diversity. Crop Sci 35:346–354Google Scholar
  8. Brush SB (2000) The issues of in situ conservation of crop genetic resources. In: Brush SB (ed) Genes in the field: on-farm- conservation of crop diversity. IPGRI, Rome, pp 3–26Google Scholar
  9. Burkhill IH (1953) Habits of man and the origins of the cultivated plants of the Old World. J Proc Linn Soc Lond (Bot) 164:12–42Google Scholar
  10. Camacho Villa TC, Maxted N, Scholten MA, Ford-Lloyd BV (2005) Defining and identifying crop landraces. Plant Genet Res 3:373–384. doi: 10.1079/PGR200591 CrossRefGoogle Scholar
  11. CBD (1992) Convention on biological diversity: text and annexes. Secretariat of the Convention on Biological Diversity, MontrealGoogle Scholar
  12. CBD (2002) Global strategy for plant conservation. Secretariat of the convention on biological diversity, Montreal. Available via DIALOG. Accessed 23 Oct 2009
  13. Chevalier A (1944) La dolique de Chine en Afrique. Rev Bot Appl Agr Trop 24:128–152Google Scholar
  14. Coulibaly S, Pasquet RS, Papa R, Gepts P (2002) AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. (Walp.) reveals extensive gene flow between wild and domesticated types. Theor Appl Genet 104:358–366. doi: 10.1007/s001220100740 CrossRefPubMedGoogle Scholar
  15. Council Regulation (EC) No 510/2006 of 20 March 2006 on the protection of geographical indications and designations of origin for agricultural products and foodstuffs. Available via DIALOG. Accessed 14 Febr 2009
  16. Diouf D, Hilu KW (2005) Microsatellites and RAPD markers to study genetic relationships among cowpea breeding lines and local varieties in Senegal. Genet Resour Crop Evol 52:1057–1067. doi: 10.1007/s10722-004-6107-z CrossRefGoogle Scholar
  17. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–24Google Scholar
  18. Esquinas-Alcazar JT (1993) Plant genetic resources. In: Hayward MD, Bosemark NO, Romagosa I (eds) Plant breeding: principles and prospects. Chapman & Hall, London, pp 33–51Google Scholar
  19. FAO (Food and Agriculture Organization) (2001) International treaty on plant genetic resources for food and agriculture. Available via DIALOG. Accessed 6 Nov 2009
  20. Feleke Y, Pasquet R, Gepts P (2006) Development of PCR-based chloroplast DNA markers that characterize domesticated cowpea (Vigna unguiculata ssp. unguiculata var. unguiculata) and highlight its crop-weed complex. Plant Syst Evol 262:75–87. doi: 10.1007/s00606-006-0475-0 CrossRefGoogle Scholar
  21. Felsenstein J (2005) PHYLIP (phylogeny inference package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USAGoogle Scholar
  22. Gepts P (2006) Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy. Crop Sci 46:2278–2292CrossRefGoogle Scholar
  23. Giunta per l’Inchiesta Agraria (1885) Atti della Giunta per l’inchiesta agraria e sulle condizioni della classe agricola (Province di Perugia, Ascoli Piceno, Ancona, Macerata e Pesaro). Forzoni e C, RomeGoogle Scholar
  24. Grati-Kamoun N, Mahmoud FL, Rebaï A, Gargouri A, Panaud O, Saar A (2006) Genetic diversity of tunisian olive tree (Olea europaea L.) cultivars assessed by AFLP markers. Genet Res Crop Evol 53:265–275. doi: 10.1007/s10722-004-6130-0 CrossRefGoogle Scholar
  25. Hammer K, Knüpffer H, Laghetti G, Perrino P (1999) Seeds from the past. A catalogue of crop germplasm in central and north Italy. Germplasm Institute of CNR, BariGoogle Scholar
  26. Hammer K, Gladis TH, Diederichsen (2003) An in situ and on-farm management of plant genetic resources. Europ J Agron 19:509–517CrossRefGoogle Scholar
  27. Harlan JR (1992) Crops and man. American Society of Agronomy, Inc, MadisonGoogle Scholar
  28. Hirano R, Kikuchi A, Kawase M (2008) Evaluation of genetic diversity of bread wheat landraces from Pakistan by AFLP and implication for a future collection strategy. Genet Resour Crop Evol 55:1007–1101. doi: 10.1007/s10722-008-9308-z CrossRefGoogle Scholar
  29. IPGRI (1993) Diversity for development. International Plant Genetic Resources Institute, RomeGoogle Scholar
  30. Jaccard P (1912) The distribution of flora in the alpine zone. New Phytol 11:37–50CrossRefGoogle Scholar
  31. Jarvis DJ, Brown AHD, Cuong PH, Collado-Panduro L, Latournerie-Moreno L, Gyawali S, Tanto T, Sawadogo M, Mar I, Sadiki M, Thi-Ngoc Hue N, Arias-Reyes L, Balma D, Bajracharya J, Castillo F, Rijal D, Belqadi L, Rana R, Saidi S, Ouedraogo J, Zangre R, Rhrib K, Chavez JL, Schoen D, Sthapit B, De Santis P, Fadda C, Hodgkin T (2008) A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc Natl Acad Sci 105:5326–5331CrossRefPubMedGoogle Scholar
  32. Laborda PR, Oliveira KM, Garcia AAF, Paterniani MEAGZ, de Souza AP (2005) Tropical maize germplasm: what can we say about its genetic diversity in the light of molecular markers? Theor Appl Genet 111:1288–1299. doi: 10.1007/s00122-005-0055-7 CrossRefPubMedGoogle Scholar
  33. Lanteri S, Saba E, Cadinu M, Mallica GM, Baghino L, Portis E (2004) Amplified fragments length polymorphism for genetic diversity assessment in artichoke. Theor Appl Genet 108:1534–1544. doi: 10.1007/s00122-003-1576-6 CrossRefPubMedGoogle Scholar
  34. Maass BL, Jamnadass RH, Hanson J, Pengelly B (2005) Determining sources of diversity in cultivated and wild Lablab purpureus related to provenance of germplasm by using amplified fragment length polymorphism. Genet Resour Crop Evol 52:683–695. doi: 10.1007/s10722-003-6019-3 CrossRefGoogle Scholar
  35. Maréchal R, Mascherpa JM, Stainier F (1978) Etude taxonomique d’un group complex d’espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques e polliniques, traitées par l’analyse informatique. Boissiera 28:1–273Google Scholar
  36. Marghali S, Panaud O, Lamy F, Ghariani S, Sarr A, Marrakchi M, Trifi-Farah N (2005) Exploration of intra- and inter- population genetic diversity in Hedysarum coronarium L. by AFLP markers. Genet Resour Crop Evol 52:277–284. doi: 10.1007/s10722-005-5459-3 CrossRefGoogle Scholar
  37. Maxted N, Hawkes JG, Ford-Lloyd BV, Williams JT (1997) A practical model for in situ genetic conservation. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation: the in situ approach. Chapman & Hall, London, pp 339–367Google Scholar
  38. Maxted N, Guarino L, Myer L, Chiwona EA (2002) Towards a methodology for on-farm conservation of plant genetic resources. Genet Resour Crop Evol 49:31–46CrossRefGoogle Scholar
  39. Medini M, Hamza S, Rebai A, Baum M (2005) Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers. Genet Resour Crop Evol 52:21–31. doi: 10.1007/s10722-005-0225-0 CrossRefGoogle Scholar
  40. Meudt H, Clarke AC (2007) Almost forgotten or latest practice? AFLP application, analyses and advances. Trends Plant Sci 12:106–117. doi: 10.1016/j.tplants.2007.02.001 CrossRefPubMedGoogle Scholar
  41. Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Sci 43:1235–1248Google Scholar
  42. Murphree MW (2009) The strategic pillars of communal natural resource management: benefit, empowerment and conservation. Biodivers Conserv 18:2551–2562. doi: 10.1007/s10531-009-9644-0 CrossRefGoogle Scholar
  43. Negri V (2003) Landraces in central Italy: where and why they are conserved and perspectives for their on farm conservation. Genet Resour Crop Evol 50:871–885. doi: 10.1023/A:1025933613279 CrossRefGoogle Scholar
  44. Negri V (2005) Agro-biodiversity conservation in Europe: ethical issues. J Agric Environ Ethics 18:3–25. doi: 10.1007/s10806-004-3084-3 CrossRefGoogle Scholar
  45. Negri V, Polegri L (2009) Genetic diversity in home gardens in Umbria: a cowpea case study. In: Bailey A, Eyzaguirre P, Maggioni L (eds) Crop genetic resources in European home gardens. Proc. Of the ECP/GR_Bioversity International related Workshop, Ljubliana, (Sl) October 3–4, 2007. Bioversity International, Rome, I, pp 55–61. ISBN 978-92-9043-810-6Google Scholar
  46. Negri V, Tosti N (1997) Collecting cowpea (Vigna unguiculata L. Walp.) germplasm in the Trasimeno area (Umbria, Italy). Plant Genet Resour Newsl 112:107–109Google Scholar
  47. Negri V, Tosti N, Falcinelli M, Veronesi F (2000) Characterization of thirteen cowpea landraces from Umbria (Italy). Genet Res Crop Evol 47:141–144CrossRefGoogle Scholar
  48. Negri V, Floridi S, Montanari L (2001) Organoleptic and chemical evaluation of Italian cowpea landraces from a restricted area. Italian J Food Sci 13:383–390Google Scholar
  49. Negri V, Branca F, Castellini G (2007) Integrating wild plants and landrace conservation in farming systems: a perspective from Italy. In: Maxted N, Ford-Lloyd BV, Kell SP, Iriondo JM, Dulloo ME and Turok J (eds) Crop wild relatives. First international conference on crop wild relatives conservation and use, Agrigento, Sicily, Italy, 14–17 September 2005. CABI, Wallingford, pp 392–402Google Scholar
  50. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323CrossRefPubMedGoogle Scholar
  51. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci 76:5269–5273CrossRefPubMedGoogle Scholar
  52. Ng NQ (1995) Cowpea Vigna unguiculata (Leguminosae-Papilionoideae). In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman Scientific and Technical England, London, pp 326–332Google Scholar
  53. Ozkan H, Brandolini A, Pozzi C, Effgen S, Wunder J, Salamini F (2005) A reconsideration of the domestication geography of tetraploid wheats. Theor Appl Genet 110:1052–1060. doi: 10.1007/s00122-005-1925-8 CrossRefPubMedGoogle Scholar
  54. Padi FK (2003) Genetic analyses of pigmentation in cowpea. Pak J Biol Sci 19:1655–1659Google Scholar
  55. Papa C (1996) The “farre de Montelione”: landrace and representation. In: Paludosi S, Hammer K, Heller J (eds) Hulled wheats. Promoting the conservation and use of underutilized and neglected crops. Proceedings of the first international workshop on hulled wheats 21–22 July 1995, Castelvecchio Pascoli. IPGRI, Rome, pp 154–171 Google Scholar
  56. Papa C (1999) Il farro a Monteleone di Spoleto: pratiche agrarie, consuetudini giuridiche e ritualità. In: Papa C (ed) Il Farro. Saperi, usi e conservazione delle varietà locali. Quaderni del CEDRAV 1. CEDRAV, Cerreto di Spoleto, Italy, pp 9–26Google Scholar
  57. Pasquet RS (1999) Genetic relationships among subspecies of Vigna unguiculata (L.) Walp. based on allozyme variation. Theor Appl Genet 98:1104–1119CrossRefGoogle Scholar
  58. Pasquet RS (2000) Allozyme diversity of cultivated cowpea Vigna unguiculata (L.) Walp. Theor Appl Genet 101:211–219. doi: 10.1007/s001220051471 CrossRefGoogle Scholar
  59. Perrino P, Laghetti G, Spagnoletti Zeuli PL, Monti LM (1993) Diversification of cowpea in the Mediterranean and other centres of cultivation. Genet Resour Crop Evol 40:121–132CrossRefGoogle Scholar
  60. Piergiovanni AR, Laghetti G (1999) The common bean landraces from Basilicata (Southern Italy): an example of integrated approach applied to genetic resources management. Genet Resour Crop Evol 46:47–52CrossRefGoogle Scholar
  61. Plinius GS (1984) Historia Naturalis. III, 18 (Trans: Aragosti A, Centi R, Ela Consolino F, Cotrozzi AM, Lechi F, Perutelli A). Giulio Einaudi, TorinoGoogle Scholar
  62. Purseglove JW (1976) The origins and migrations of crops in tropical Africa. In: Harlan JR, de Wet JM, Stemler ABL (eds) Origins of African plant domestication. The Hague, Mouton, pp 291–310Google Scholar
  63. Rohlf FJ (1993) NTSYS.PC. Numerical taxonomy and multivariate analysis system, version 2.11Q. Applied Biostatistics Inc, New York, USAGoogle Scholar
  64. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  65. Singh BB, Chambliss OL, Sharma B (1997) Recent advances in cowpea breeding. In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in cowpea research. IITA-JIRCAS, Ibadan, pp 30–49Google Scholar
  66. Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ (2005) A single domestication for potato based on multilocus amplified fragment lenght polymorphism genotyping. Proc Natl Acad Sci 102:14694–14699. doi: 10.1073/pnas.0507400102 CrossRefPubMedGoogle Scholar
  67. Tosti N (1999) La salvaguardia e la valorizzazione delle antiche varietà per lo sviluppo di economie di nicchia: analisi morfoagronomica e molecolare entro popolazioni locali di Vigna unguiculata (L.) Walp. Dottorato di Ricerca Thesis, Perugia University, ItalyGoogle Scholar
  68. Tosti N, Negri V (2002) Efficiency of three PCR-based markers in assessing genetic variation among cowpea landraces. Genome 45:268–275. doi: 10.1139/g01-146 CrossRefPubMedGoogle Scholar
  69. Tosti N, Negri V (2005) On-going on-farm microevolutionay processes in neighbouring cowpea landraces revealed by molecular markers. Theor Appl Genet 110:1275–1283. doi: 10.1007/s00122-005-1964-1 CrossRefPubMedGoogle Scholar
  70. Ude GN, Kenwothy WJ, Costa JM, Cregan PB, Alvernaz J (2003) Genetic diversity of soybean cultivars from China, Japan, North America, and North American ancestral lines determined by amplified fragment length polymorphism. Crop Sci 43:1858–1867CrossRefGoogle Scholar
  71. Vetelainen M, Negri V, Maxted N (eds) (2009) European landraces: on-farm conservation, management and use. Bioversity Technical Bulletin No. 15, Bioversity International, RomeGoogle Scholar
  72. Vos P, Hogers R, Bleeker M, Rejans M, van de Lee T, Hornes M, Frijters J, Pot J, Peleman J, Kupier M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414CrossRefPubMedGoogle Scholar
  73. Wood D, Lenné JM (1997) The conservation of agrobiodiversity on-farm: questioning the emerging paradigm. Biodivers Conserv 6:109–129CrossRefGoogle Scholar
  74. Yeh FC, Yang RC, Boyle TJB, Ye ZH, Mao JX (1999) POPGENE, the user-friendly shareware for population genetic analysis. Edmonton, Molecular Biology and Biotechnology Centre, University of Alberta, CanadaGoogle Scholar
  75. Zeid M, Schön C, Link W (2003) Genetic diversity in recent elite faba bean lines using AFLP markers. Theor Appl Genet 107:1304–1314. doi: 10.1007/s00122-003-1350-9 CrossRefPubMedGoogle Scholar
  76. Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Dipartimento di Biologia Applicata (DBA)Università degli Studi di PerugiaPerugiaItaly

Personalised recommendations