Genetic Resources and Crop Evolution

, Volume 57, Issue 3, pp 371–386 | Cite as

Morphological and molecular diversity within Algerian cowpea (Vigna unguiculata (L.) Walp.) landraces

  • Naima Ghalmi
  • Marie Malice
  • Jean-Marie Jacquemin
  • Sidi-Mohamed Ounane
  • Leila Mekliche
  • Jean-Pierre Baudoin
Research Article


Twenty landraces of cowpea (Vigna unguiculata (L.) Walp.) scattered throughout Algeria were compared through morphological and genetic characterization. At the morphological level, for qualitative characters there was no intra-landrace variation and for quantitative characters the variations were low except for landrace NAG2 Three different cultigroups were located in Algeria: Biflora that was dominant in the Sahara, Melanophtalmus in the North and Unguiculata including one landrace in Kabylia and two in Sahara. The AMOVA analysis indicated that the genetic variation was lower within than among agro-ecological regions. A Mantel test, revealed a correlation between the qualitative morphological data and the geographical data (R = 0.28; P < 0.01), indicating that the degree of morphological change among landraces was roughly proportional to the geographical distances separating them. Genetic diversity was analyzed by using 11 random amplified polymorphic DNA (RAPD) and 12 inter-simple sequence repeat (ISSR) markers. No intra-landrace variability was found. The eleven RAPD primers yielded 77 bands, of which 45 (58.44%) were polymorphic; the genetic similarity ranged from 66.0 to 96.7%. The twelve ISSR primers provided a total of 104 bands, of which 65 (62.5%) were polymorphic; the genetic similarity ranged from 62.8 to 97.8%. cluster analysis showed a good match between genetic background and geographical distribution, which was confirmed by the results of the Mantel test. In particular, geographical data and genetic data were found to be correlated: (R = 0.33; P < 0.01) for RAPD, (R = 0.37; P < 0.01) for ISSR, and (R = 0.33; P < 0.01) for a combined RAPD-ISSR dataset. Moreover, despite the absence of significant correlation between morphological and RAPD data (R = 0.14; P = 0.14), significant correlations between morphological data and both ISSR (R = 0.27, P < 0.05) and a combined RAPD-ISSR dataset (R = 0.22, P < 0.05) were noted. ISSR markers were better linked to morphological variation than were RAPD markers. However, despite this, genetic distances among these landraces were found to be essentially the same no matter which markers were used.


Comparative analysis Genetic variability ISSR Morphological markers RAPD Vigna unguiculata 



The authors are grateful to the Algerian Ministry of Higher Education and Scientific Research (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique) for its financial support. We thank the “Laboratory of Molecular Biology of Walloon Agricultural Research Centre of Gembloux” for valuable technical assistance and Dr Bernard China for his critical reading of the manuscript. N. Ghalmi thanks the “Institut Technique des Cultures Maraîchères” of Staouéli for its contribution to the morphological assay.


  1. Ajibade SR, Weeden NF, Chite SM (2000) Inter simple sequence repeat analysis of genetic relationships in the genus Vigna. Euphytica 111:47–55CrossRefGoogle Scholar
  2. Anoun N, Echikh N (1990) Étude biosystématique d’une légumineuse saharienne: le Tadelaght. Mémoire DES. Univ. Sci. Technol. Houari Boumedienne. Bab Ezzouar, Algeria, 101 ppGoogle Scholar
  3. Ba FS, Pasquet RS, Gepts P (2004) Genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] as revealed by RAPD markers. Genet Resour Crop Evol 51:539–550CrossRefGoogle Scholar
  4. Badiane FA, Diouf D, Sané D, Diouf O, Goudiaby V, Diallo N (2004) Screening cowpea (Vigna unguiculata (L.) Walp.) varieties by inducing water deficit and RAPD analyses. Afr J Biotechnol 3:174–178Google Scholar
  5. Blair MW, Panaud O, McCouch SR (1999) Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor Appl Genet 98:780–792CrossRefGoogle Scholar
  6. Charters YM, Wilkinson MJ (2000) The use of self-pollinated progenies as ‘in-groups’ for the genetic characterization of cocoa germplasm. Theor Appl Genet 100:160–166CrossRefGoogle Scholar
  7. Chevalier A (1932) Productions végétales du Sahara. Rev Bot Appl Agric Trop 12:133–134Google Scholar
  8. Chevalier A (1944) Le dolique de Chine en Afrique. Son histoire, ses affinités, les formes sauvages et cultivées. Son rôle dans l’alimentation indigène et en agriculture tropicale et sub-tropicale. Rev Bot Appl Agric Trop 24:128–152Google Scholar
  9. Depeiges A, Goubely C, Lenoir A, Cocherel S, Picard G, Raynal M, Grellet F, Delseny M (1995) Identification of the most represented repeat motifs in Arabidopsis thaliana microsatellite loci. Theor Appl Genet 91:160–168CrossRefGoogle Scholar
  10. Dikshit HK, Jhang T, Singh NK, Koundal KR, Bansal KC, Chandra N, Tickoo JL, Sharma TR (2007) Genetic differentiation of Vigna species by RAPD, URP and SSR markers. Biol Plant 51:451–457CrossRefGoogle Scholar
  11. Diouf D, Hilu KW (2005) Microsatellites and RAPD markers to study genetic relationships among cowpea breeding lines and local varieties in Senegal. Genet Resour Crop Evol 52:1057–1067CrossRefGoogle Scholar
  12. Doebley J (1989) Isozymic evidence and the evolution of crop plants. In: Soltis DE, Soltis PS (eds) Isoenzymes in plant biology. Dioscorides Press, Portland, pp 165–191Google Scholar
  13. Echikh N (2000) Organisation du pool génique de formes sauvages et cultivées d’une légumineuse alimentaire, Vigna unguiculata (L.) Walp. Ph.D. thesis, Faculté Universitaire des Sciences Agronomiques de Gembloux, Gembloux, Belgium, 307 ppGoogle Scholar
  14. Ehlers JD, Hall AE (1997) Cowpea (Vigna unguiculata (L.) Walp.). Field Crops Res 53:187–204CrossRefGoogle Scholar
  15. Eloward HOA, Hall AE (1987) Influence of early and late nitrogen fertilization on yield and nitrogen fixation of cowpea under well-watered and dry field conditions. Field Crops Res 15:229–244CrossRefGoogle Scholar
  16. Fall L, Diouf D, Fall-Ndiaye MA, Badiane FA, Gueye M (2003) Genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] varieties determined by ARA and RAPD techniques. Afr J Biotechnol 2:48–50Google Scholar
  17. Fang DQ, Roose ML (1997) Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor Appl Genet 95:408–417CrossRefGoogle Scholar
  18. Gillaspie AG, Hopkins MS, Dean RE (2005) Determining genetic diversity between lines of Vigna unguiculata subspecies by AFLP and SSR markers. Genet Resour Crop Evol 52:245–247CrossRefGoogle Scholar
  19. Goulao L, Valdiviesso T, Santana C, Oliveira CM (2001) Comparison between phenetic characterisation using RAPD and ISSR markers and phenotypic data of cultivated chestnut (Castanea sativa Mill.). Genet Resour Crop Evol 48:329–338CrossRefGoogle Scholar
  20. Hall AE, Patel PN (1985) Breeding of resistance to drought and heat. In: Singh SR, Rachie KO (eds) Cowpea research. Production and utilization. Wiley, New York, pp 137–151Google Scholar
  21. International Board for Plant Genetic Resources (IBPGR) (1983) Cowpea descriptors. IBPGR, Rome (34 pp)Google Scholar
  22. Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, Van De Wiel C (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breeding 3:381–390CrossRefGoogle Scholar
  23. Kwapata MB, Hall AE (1985) Effects of moisture regime and phosphorus on mycorrhizal infection, nutrient uptake and growth of cowpeas (Vigna unguiculata (L.) Walp.). Field Crops Res 12:241–250CrossRefGoogle Scholar
  24. Lakhanpaul S, Chadha S, Bhat KV (2000) Random amplified polymorphic DNA (RAPD) analysis in Indian mungbean [Vigna radiata (L.) Wilczek] cultivars. Genetica 109:227–234CrossRefPubMedGoogle Scholar
  25. Leakey CLA (1988) Genotypic and phenotypic markers in common bean. In: Gepts P (ed) Genetic resources of Phaseolus bean. Kluwer, Dordrecht, pp 245–327Google Scholar
  26. Li CD, Fatokun CA, Ubi B, Singh BB, Scoles GJ (2001) Determining genetic similarities and relationships among cowpea breeding lines and cultivars by microsatellite markers. Crop Sci 41:189–197Google Scholar
  27. Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  28. Marotti I, Bonetti A, Minelli M, Catizone P, Dinelli G (2007) Characterization of some Italian common bean (Phaseolus vulgaris L.) landraces by RAPD, semi-random and ISSR molecular markers. Genet Resour Crop Evol 54:175–188CrossRefGoogle Scholar
  29. Massawe FJ, Roberts JA, Azam-Ali SN, Daved MR (2002) Genetic diversity in bambara groundnut (Vigna subterranea (L.) Verdc.) landraces assessed by random amplified polymorphic DNA (RAPD) markers. Genet Resour Crop Evol 50:737–741CrossRefGoogle Scholar
  30. Menendez CM, Hall AE, Gepts P (1997) A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theor Appl Genet 95:1210–1217CrossRefGoogle Scholar
  31. Muthusamy S, Kanagarajan S, Ponnusamy S (2008) Efficiency of RAPD and ISSR markers system in accessing genetic variation of rice bean (Vigna umbellata) landraces. Electr J Biotech 11(3): 10 pp. doi:  10.2225/vol11-issue3-fulltext-8
  32. Ng NQ, Marechal R (1985) Cowpea taxonomy, origin and germplasm. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, New York, pp 11–21Google Scholar
  33. Nkongolo KK (2003) Genetic characterization of Malawian cowpea (Vigna unguiculata (L.) Walp.) landraces: diversity and gene flow among accessions. Euphytica 129:219–228CrossRefGoogle Scholar
  34. Ouédraogo JT, Gowda BS, Jean M, Close TJ, Ehlers JD, Hall AE, Gillaspie AG, Roberts PA, Ismail AM, Bruening G, Gepts P, Timko MP, Belzile FJ (2002) An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers, and biological resistance traits. Genome 45:175–188CrossRefPubMedGoogle Scholar
  35. Padulosi S (1993) Genetic diversity, taxonomy and ecogeographic survey of the wild relatives of cowpea (Vigna unguiculata (L.) Walp.). Ph.D. dissertation, Universite’ catholique Louvain-la- Neuve, Belgium, 477 pGoogle Scholar
  36. Pasquet R (1994) Organisation génétique et évolutive des formes spontanées et cultivées du niébé, Vigna unguiculata (L.) Walp. biosystématique et processus de domestication. Ph.D. thesis, Paris Grignon, I.N.A. Paris-Grignon-ORSTOM, France, 284 pGoogle Scholar
  37. Pasquet RS (1998) Morphological study of cultivated cowpea Vigna unguiculata (L.) Walp. Importance of ovule number and definition of cv. gr Melanophthalmus. Agronomie 18:61–70CrossRefGoogle Scholar
  38. Pasquet RS (1999) Genetic relationships among subspecies of Vigna unguiculata (L.) Walp. based on allozyme variation. Theor Appl Genet 98:1104–1119CrossRefGoogle Scholar
  39. Pasquet RS (2000) Allozyme diversity of cultivated cowpea Vigna unguiculata (L.) Walp. Theor Appl Genet 101:211–219CrossRefGoogle Scholar
  40. Qian W, Ge S, Hong DY (2001) Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor Appl Genet 102:440–449CrossRefGoogle Scholar
  41. Raina SN, Rani V, Kojima T, Ogihara Y, Singh KP, Devarumath RM (2001) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44:763–772CrossRefPubMedGoogle Scholar
  42. Ranade R, Vaidya UJ, Kotwal SA, Bhagwat A, Gopalakrishna T (2000) Hybrid seed genotyping and plant varietal identification using DNA markers. In: DAE-BRNS symposium on the use of nuclear and molecular techniques in crop improvement, 6–8 December 2000, Mumbai, India, pp 338–345Google Scholar
  43. Rosenberg MS (2001) Passage. pattern analysis, spatial statistics, and geographic exegesis. Version 1.1. Department of Biology, Arizona State University, TempeGoogle Scholar
  44. Sarutayophat T, Nualsri C, Santipracha Q, Saereeprasert V (2007) Characterization and genetic relatedness among 37 yardlong bean and cowpea accessions based on morphological characters and RAPD analysis. Songklanakarin J Sci Technol 29:591–600Google Scholar
  45. Schneider S, Roessli D, Excoffier L (2000) Arlequin ver 2.000; a software for population genetics data analysis. Genetics and biometry laboratory, Dept of Anthropology and ecology, University of Geneva, SuisseGoogle Scholar
  46. Singh SP, Nodari R, Gepts P (1991) Genetic diversity in cultivated common bean. l. Allozymes. Crop Sci 31:19–23CrossRefGoogle Scholar
  47. Singh BB, Chambliss OL, Sharma B (1997) Recent advances in cowpea breeding. In: Singh BB, Mohanraj DR, Dashiell KE, Jackai LEN (eds) Advances in cowpea research. IITA-JIRCAS, Ibadan, pp 30–49Google Scholar
  48. Singh S, Reddy KS, Jawali N (2000) PCR analysis of mungbean genotypes using anchored simple sequence repeat primers. In: DAE-BRNS symposium on the use of nuclear and molecular techniques in crop Improvement. BARC, Mumbai, India, pp 359–369Google Scholar
  49. Souframanien J, Gopalakrishna T (2004) A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theor Appl Genet 109:1687–1693CrossRefPubMedGoogle Scholar
  50. Tosti N, Negri V (2002) Efficiency of three PCR-based markers in assessing genetic variation among cowpea (Vigna unguiculata subsp. unguiculata) landraces. Genome 45:268–275CrossRefPubMedGoogle Scholar
  51. Trabut A (1935) Répertoire des noms indigènes des plantes spontanées cultivées et utilisées dans le nord de l’Afrique. Algiers, Algeria, 355 ppGoogle Scholar
  52. Van de Peer Y, de Wachter Y (1994) TREECON for windows: a software package for the construction and drawing of evolutionary trees for the microsoft environment. Comput Appl Biosci 10:569–570PubMedGoogle Scholar
  53. Welsh J, Mc Clelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218CrossRefPubMedGoogle Scholar
  54. Westphal E (1974) Pulses in Ethiopia: their taxonomy and agriculture significance. Agricultural research report 815. Center for Agricultural Publishing and Documentation, WageningenGoogle Scholar
  55. Xue-Jun G, Yan Y, Yong-Ming Y, Hong-Wen H, Cheng Y (2005) Genetic diversity and geographic differentiation in endangered Ammopiptanthus (Leguminosae) populations in desert regions of northwest china as revealed by ISSR analysis. Ann Bot 95:843–851CrossRefGoogle Scholar
  56. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Naima Ghalmi
    • 1
  • Marie Malice
    • 2
  • Jean-Marie Jacquemin
    • 3
  • Sidi-Mohamed Ounane
    • 1
  • Leila Mekliche
    • 1
  • Jean-Pierre Baudoin
    • 2
  1. 1.Department of Crop HusbandryNational Agronomic InstituteAlgiersAlgeria
  2. 2.Tropical Crop Husbandry and HorticultureGembloux Agricultural UniversityGemblouxBelgium
  3. 3.Department of Biotechnology, Laboratory of Molecular BiologyWalloon Agricultural Research CentreGemblouxBelgium

Personalised recommendations