Advertisement

Genetic Resources and Crop Evolution

, Volume 57, Issue 2, pp 255–272 | Cite as

Genetic structure and differentiation among grapevines (Vitis vinifera) accessions from Maghreb region

  • L. Riahi
  • N. Zoghlami
  • K. El-Heit
  • V. Laucou
  • L. Le Cunff
  • J. M. Boursiquot
  • T. Lacombe
  • A. Mliki
  • A. Ghorbel
  • P. This
Research Article

Abstract

Three gene pools representative of Vitis vinifera L. subsp. vinifera (=subsp. sativa Beger) growing in the Maghreb regions (North Africa) from Tunisia (44), Algeria (31) and Morocco (18) and 16 wild grape accessions (Vitis vinifera L. subsp. sylvestris (Gmelin) Beger) from Tunisia were analysed for genetic diversity and differentiation at twenty nuclear microsatellites markers distributed throughout the 19 grape chromosomes. 203 alleles with a mean number of 10.15 alleles per locus were observed in a total of 109 accessions. Genetic diversities were high in all populations with values ranging from 0.6775 (Moroccan cultivars) to 0.7254 (Tunisian cultivars). F st pairwise values between cultivated grapevine populations were low but found to be significantly different from zero. High F st pairwise values were shown between wild and cultivated compartments. Two parent offspring relationships, two synonyms and two clones of the same cultivar were detected. The rate of gene flow caused by vegetative dissemination of cultivated grapevine plants was not sufficient to genetically homogenise the pools of cultivars grown in different regions. The Neighbour Joining cluster analysis showed a clear separation according to geographical origins for the cultivated grapevines gene pools and revealed a high dissimilarity between cultivated and wild grapevine. However, three cultivars (Plant d’Ouchtata 1, Plant de Tabarka 3 and Plant d’Ouchtata 3) are very close to wild accessions and may result from a hybridisation between cultivated and wild accessions. The high level of differentiation between cultivated and wild accessions indicates that the cultivated accessions do not derive directly from local wild populations but could mostly correspond to imported materials introduced from others regions during historical times or derived from crossing between them.

Keywords

Differentiation Genetic structure Maghreb nSSR Vitis vinifera 

Notes

Acknowledgments

The authors are grateful to INRA, Montpellier France and to the Tunisian Ministry of Higher Education, Scientific Research and Technology for financial support.

References

  1. Adam-Blondon AF, Roux C, Claux D, Butterlin G, Merdinoglu D, This P (2004) Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor Appl Genet 109:1017–1027CrossRefPubMedGoogle Scholar
  2. Aradhya MK, Dangl GS, Prins BH, Boursiquot JM, Walker MA, Meredith CP, Simon CJ (2003) Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genet Res Camb 81:179–192CrossRefGoogle Scholar
  3. Arroyo-García R, Ruiz-García L, Bolling L, Ocete R, López MA, Arnold C, Ergul A, Söylemezo LU G, Uzun HI, Cabello F, Ibáñez J, Aradhya MK, Atanassov A, Atanassov I, Balint S, Cenis JL, Costantini L, Gorislavets S, Grando MS, Klein BY, McGovern PE, Merdinoglu D, Pejic I, Pelsy F, Primikirios N, Risovannaya V, Roubelakis-Angelakis KA, Snoussi H, Sotiri P, Tamhankar S, This P, Troshin L, Malpica JM, Lefort F, Martinez-Zapater JM (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15:3707–3714CrossRefPubMedGoogle Scholar
  4. Belkhir K (1999) GENETIX, version 4.02 a windows program for population genetic analysis. Laboratoire genome, populations: interactions UPR 9060 du CNRS. Université Montpellier 2, MontpellierGoogle Scholar
  5. Ben Salem-Fnayou A (2006) Etude physiologique et sanitaire de la vigne cultivée dans le sud tunisien. Ph.D. Thesis, Facultés des Sciences de TunisGoogle Scholar
  6. Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 39:628–633CrossRefPubMedGoogle Scholar
  7. Bowers JE, Dangl GS, Meredith CP (1999) Development and characterization of additional microsatellite DNA markers for grape. Am J Enol Vitic 50:243–246Google Scholar
  8. Di Vecchi Staraz M, Bandinelli R, Boselli M, This P, Boursiquot JM, Laucou V, Lacombe T, Varès D (2007) Genetic structuring and parentage analysis for evolutionary studies in grapevine: kin group and origin of the cultivar sangiovese revealed. J Am Soc Hortic Sci 132(4):514–524Google Scholar
  9. Di Vecchi Staraz M, Laucou V, Bruno G, Lacombe T, Gerber S, Bourse T, Boselli M, This P (2009) Low level of pollen-mediated gene flow from cultivated to wild grapevine: consequences for the evolution of the endangered subspecies Vitis vinifera L. subsp. silvestris. J Hered 100(1):66–75CrossRefPubMedGoogle Scholar
  10. Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382CrossRefPubMedGoogle Scholar
  11. Gerber S, Mariette S, Streiff R, Bodénès C, Kremer A (2000) Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Mol Ecol 9:1037–1048CrossRefPubMedGoogle Scholar
  12. Gerber S, Chabrier P, Kremer A (2003) FaMoz: a software for parentage analysis using dominant, codominant and uniparentally inherited markers. Mol Ecol Notes 3:479–481CrossRefGoogle Scholar
  13. Grassi F, Labra M, Imazio S, Spada A, Sgorbati S, Scienza A, Sala F (2003) Evidence of a secondary grapevine domestication centre detected by SSR analysis. Theor Appl Genet 107:1315–1320CrossRefPubMedGoogle Scholar
  14. Lacombe T, Boursiquot JM, Laucou V, Dechesne F, Varès D, This P (2007) Relationships and genetic diversity within the accessions related to ‘Malvasia’ held in the INRA grape germplasm repository at Domaine de Vassal. Am J Enol Vitic 58:124–131Google Scholar
  15. Levadoux L (1956) Les populations sauvages de Vitis vinifera L. Annales de l’Amelioration des Plantes 6:59–118Google Scholar
  16. Lopes MS, Sefc KM, Eiras Dias E, Steinkellner H, Laimer Câmara Machado M, Câmara Machado A (1999) The use of microsatellites for germplasm management in a Portuguese grapevine collection. Theor Appl Genet 99:733–739CrossRefGoogle Scholar
  17. Lopes MS, Rodrigues dos Santos M, Eiras Dias JE, Mendonça D, da Câmara Machado A (2006) Discrimination of Portuguese grapevines based on microsatellite markers. J Biotechnol 127:34–44CrossRefPubMedGoogle Scholar
  18. McGovern PE (2004) Ancient wine: the search for the origins of viniculture. Princeton University Press, New JerseyGoogle Scholar
  19. Negrul AM (1946) Origine de la vigne cultivée et sa classification. Ampélographie d’URSS, Tome1Google Scholar
  20. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci 70:3321–3323CrossRefPubMedGoogle Scholar
  21. Olmo HP (1976) Grapes. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 294–298Google Scholar
  22. Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–358CrossRefPubMedGoogle Scholar
  23. Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Enfield, Science Publishers, Montpellier, pp 43–76Google Scholar
  24. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  25. Sefc KM, Lopes MS, Lefort F, Botta R, Roubelakis-Angelakis KA, Ibanez J, Pejic I, Wagner HW, Glossl J, Steinkellner H (2000) Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor Appl Genet 100:498–505CrossRefGoogle Scholar
  26. Sefc KM, Steinkellner H, Lefort F, Botta R, da Câmara Machado A, Borrego J, Glössl J (2003) Evaluating the genetic contribution of local wild vines to European grapevine cultivars. Am J Enol Vitic 54:15–21Google Scholar
  27. This P, Jung A, Boccacci P, Borrego J, Botta R, Costantini L, Crespan M, Dangl GS, Eisenheld C, Ferreira-Monteiro F, Grando MS, Ibanez J, Lacombe T, Laucou V, Magalhaes R, Meredith CP, Milani N, Peterlunger E, Regner F, Zulini L, Maul E (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109:1448–1458CrossRefPubMedGoogle Scholar
  28. This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22:511–519CrossRefPubMedGoogle Scholar
  29. Thomas MR, Scott NS (1993) Microsatellite repeats in grapevine reveal DNA polymorphisms when analyzed as sequence-tagged sites (STSs). Theor Appl Genet 86:985–990Google Scholar
  30. Wagner HW, Sefc KM (1999) IDENTITY 4.0. Centre for Applied Genetics, University of Agricultural Sciences, ViennaGoogle Scholar
  31. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  32. Wright S (1978) Evolution and the genetics of populations: variability within and among natural populations vol 4. University of Chicago Press, ChicagoGoogle Scholar
  33. Zoghlami N (2007) Utilisation de marqueurs moléculaires pour l’évaluation génétique de la vigne tunisienne. Ph.D. Thesis, Facultés des Sciences de TunisGoogle Scholar
  34. Zoghlami N, Mliki A, Ghorbel A (2003) Occurrence and discrimination of spontaneous grapes native to Tunisia by RAPD markers. Acta Hortic 603:157–165Google Scholar
  35. Zohary D, Hopf M (1993) Domestication of plants in the old world. Clarendon Press, OxfordGoogle Scholar
  36. Zohary D, Spiegel-Roy P (1975) Beginnings of fruit growing in the old world. Science 187:319–327CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • L. Riahi
    • 1
  • N. Zoghlami
    • 1
  • K. El-Heit
    • 2
  • V. Laucou
    • 3
  • L. Le Cunff
    • 3
  • J. M. Boursiquot
    • 3
  • T. Lacombe
    • 3
  • A. Mliki
    • 1
  • A. Ghorbel
    • 1
  • P. This
    • 3
  1. 1.Laboratoire de Physiologie Moléculaire de la VigneCentre de Biotechnologie Borj CedriaHammam-LifTunisia
  2. 2.Laboratoire d’Arboriculture et Viticulture, Département des Sciences AgronomiquesUniversité Mouloud Mammeri de Tizi-OuzouTizi-OuzouAlgeria
  3. 3.Equipe Génétique Vigne, UMR DiAPC, INRA SupAgroMontpellierFrance

Personalised recommendations