Genetic Resources and Crop Evolution

, Volume 56, Issue 8, pp 1131–1148 | Cite as

Genetic diversity of barley (Hordeum vulgare L.) landraces from the central highlands of Ethiopia: comparison between the Belg and Meher growing seasons using morphological traits

  • Tesema Tanto Hadado
  • Domenico Rau
  • Elena Bitocchi
  • Roberto Papa
Research Article


In Ethiopia, barley is generally grown in two different planting seasons per year: during the long rainy season (Meher) and the short rainy season (Belg). The aim of the present study was to assess for the first time the role of this ‘two-season system’ on the structure of the genetic diversity of the Ethiopian barley landraces. We characterised 3,170 individual genotypes from 106 landrace populations using eight morphological spike traits. The diversity within population was higher in the season where barley is more important (Belg), and in general, where its cultivation is in larger plots because of weaker ‘competition’ with others crops. This indicates that barley diversity has a complex relationship with variations in the surrounding agro-ecosystem. Overall, the divergence between the two seasons was quite small (3.4%), suggesting that seed flow does not occur independently across the years within the two seasons. This would affect the amount of mutations and historic recombination that have accumulated within these populations.


Agro-ecosystem Hordeum vulgare L. Landraces Morphological diversity Plant breeding Population structure 



We are grateful to the Ethiopian farmers for their kind help and to whom we dedicate this paper. We would like to particularly thank A. H. D. Brown, H. Knüpffer, T. Hodgkin and D. I. Jarvis, for valuable advice. We thank the guides, Asefa Mekonnen, Mengesha Ergeta, Getachew Adere, and Legesse Bejiga, for their support during the survey and collection work. All authors thank Bioversity International for a partial contribution to cover costs of the collection trip to Ethiopia, with particular further thanks from T. Tanto for the support for his stay in Ancona. This study constituted a part of the PhD thesis of Tesema Tanto Hadado.

Supplementary material

10722_2009_9437_MOESM1_ESM.doc (388 kb)
Supplementary material 1 (DOC 388 kb)


  1. Alemayehu F (1995) Genetic variation between and within Ethiopian barley landraces with emphasis on durable resistance. PhD Thesis, Landbouw Universiteit Wageningen, HollandGoogle Scholar
  2. Asfaw Z (1988) Variation in the morphology of the spike within Ethiopian barley Hordeum vulgare L. Acta Agric Scand 38:277–288CrossRefGoogle Scholar
  3. Asfaw Z (1989a) Relationships between spike morphology, hordeins and altitude within Ethiopian barley. Hereditas 110:203–209. doi: 10.1111/j.1601-5223.1989.tb00782.x CrossRefGoogle Scholar
  4. Asfaw Z (1989b) Variation in hordein polypeptide pattern within Ethiopian barley, Hordeum vulgare L. (Poaceae). Hereditas 110:185–191. doi: 10.1111/j.1601-5223.1989.tb00779.x CrossRefGoogle Scholar
  5. Asfaw Z (1990) An ethnobotanical study of barley in the central highlands of Ethiopia. Biol Zent Bl 109:51–62Google Scholar
  6. Asfaw Z (1996) Barley in Ethiopia: the link between botany and tradition. In: Gebre H, van Leur J (eds) Barley research in Ethiopia: past work and future prospects. Proceedings of the first barley research review workshop, 16–19 October 1993. Addis Ababa. IAR/ICARDAGoogle Scholar
  7. Attene G, Ceccarelli S, Papa R (1996) The barley (Hordeum vulgare L.) of Sardinia, Italy. Genet Resour Crop Evol 43:385–393Google Scholar
  8. Azhaguvel P, Komatsuda T (2007) A phylogenetic analysis based on nucleotide sequence of a marker linked to the Brittle Rachis Locus indicates a diphyletic origin of barley. Ann Bot (Lond) 100:1009–1015. doi: 10.1093/aob/mcm129 CrossRefGoogle Scholar
  9. Badr A, Müller K, Schäfer-Pregl R, El Rabey H, Effgen S, Ibrahim HH, Pozzi C, Rohde W, Salamini F (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17:499–510PubMedGoogle Scholar
  10. Bekele E (1983a) Some measures of gene diversity analysis on landrace populations of Ethiopian barley. Hereditas 102:139–150Google Scholar
  11. Bekele E (1983b) A differential rate of regional distribution of barley flavonoid patterns in Ethiopia, and a view on the center of origin of barley. Hereditas 98:269–280. doi: 10.1111/j.1601-5223.1983.tb00605.x CrossRefPubMedGoogle Scholar
  12. Bekele B, Alemayehu F, Berhane L (2005) Food barley in Ethiopia. In: Grando S, Gomez Macpherson H (eds) Food barley: importance, uses, and local knowledge. Proceedings of the international workshop on food barley improvement, 14–17 January 2002, Hammamet, Tunisia. ICARDA, AleppoGoogle Scholar
  13. Berhane L, Yitbarek S, Alemayehu F, Gebre H, Grando S, Van Leur JAG, Ceccarelli S (1997) Exploiting and diversity of barley landraces in Ethiopia. Genet Resour Crop Evol 44:109–116. doi: 10.1023/A:1008644901982 CrossRefGoogle Scholar
  14. Bioversity International barley descriptors (1994) Descriptor for barley (Hordeum vulgare L.). International Plant Genetic Resources Institute, RomeGoogle Scholar
  15. Blattner FR, Badani Méndez AG (2001) RAPD data do not support a second centre of barley domestication in Morocco. Genet Resour Crop Evol 48:13–19. doi: 10.1023/A:1011299021969 CrossRefGoogle Scholar
  16. Brandt SA (1984) New perspectives on the origin of food production in Ethiopia. In: Desmond Clark J, Brandt SA (eds) From hunters to farmers. UCLA, Berkeley, pp 173–190Google Scholar
  17. Ceccarelli S, Grando S (2000) Barley landraces from the fertile crescent: a lesson for plant breeders. In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. Lewis Publisher, Boca RatonGoogle Scholar
  18. Demissie A, Bjørnstad A (1996) Phenotypic diversity of Ethiopian barley in relation to geographical regions, altitudinal range, and agro-ecological zones as an aid to germplasm collection and conservation strategy. Hereditas 124:17–29. doi: 10.1111/j.1601-5223.1996.00017.x CrossRefGoogle Scholar
  19. Demissie A, Bjørnstad A (1997) Geographical, altitude and agro-ecological differentiation of isozyme and hordein genotypes of landrace barleys from Ethiopia: implications to germplasm conservation. Genet Resour Crop Evol 44:43–55. doi: 10.1023/A:1008686009866 CrossRefGoogle Scholar
  20. Engels JMM (1994) Genetic diversity in Ethiopia in relation to altitude. Genet Resour Crop Evol 41:67–73. doi: 10.1007/BF00053050 CrossRefGoogle Scholar
  21. Excoffier L, Laval G, Schneider S (2006) Arlequin ver. 3.01: an integrated software package for population genetics data analysis. University of Berne, BerneGoogle Scholar
  22. FAO/WFP (2008) Crop and Food Security Assessment Mission (CFSAM) to Ethiopia (Phase 1)Google Scholar
  23. Gamst FC (1969) The Qemant: a pagan hebraic peasantry of Ethiopia. Holt, Rinehart and Winston, New YorkGoogle Scholar
  24. Gebre H, Alemayehu F (1991) Indigenous barley germplasm in Ethiopian barley breeding program. In: Engels JMM, Hawkes JG, Worede M (eds) Plant genetic resources of Ethiopia. Cambridge University Press, Cambridge, pp 303–314Google Scholar
  25. Harlan J (1969) Ethiopia: a centre of diversity. Econ Bot 23:309–314Google Scholar
  26. Hartl DL, Clark AG (1997) Principles of population Genetics, 3rd edn. Sinauer Associations, Inc, Canada press, UrbanaGoogle Scholar
  27. Jarvis DI, Brown AHD, Cuong PH, Collado-Panduro L, Latournerie-Moreno L, Gyawali S, Tanto T, Sawadogo M, Mar I, Sadiki M, Hue NT, Arias-Reyes L, Balma D, Bajracharya Castillo JF, Rijal D, Belqadi L, Rana R, Saidi S, Ouedraogo J, Zangre R, Rhrib K, Chavez JL, Schoen D, Sthapit B, De Santis P, Fadda C, Hodgkin T (2008) A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc Natl Acad Sci USA 105:5326–5331. doi: 10.1073/pnas.0800607105 CrossRefPubMedGoogle Scholar
  28. Kebebew F, Yemane T, McNeilly T (2001) Morphological and farmers cognitive diversity of barley (Hordeum vulgare L. [Poaceae]) at Bale and North Shewa of Ethiopia. Genet Resour Crop Evol 48:467–481. doi: 10.1023/A:1012082812073 CrossRefGoogle Scholar
  29. Knüpffer H, Terentyeva I, Hammer K, Kovaleva O, Sato K (2003) Ecogeographical diversity—a Vavilovian approach. In: von Bothmer R, van Hintum Th, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier Science BV, Amsterdam, pp 53–76CrossRefGoogle Scholar
  30. Lance RCM, Nilan RA (1980) Screening for low acid soluble B-glucan barleys. Barley Genet Newsl 10:41Google Scholar
  31. Leur JAG, Gebre H (2003) Diversity between some Ethiopian farmer’s varieties of barley and within these varieties among seed sources. Genet Resour Crop Evol 50:351–357. doi: 10.1023/A:1023966702389 CrossRefGoogle Scholar
  32. Mansfeld R (1950) Das morphologische System der Saatgerste (Hordeum vulgare L. s.l.). Züchter 20:8–24. doi: 10.1007/BF01093476 (Translated by P. Hanelt, Gatersleben)Google Scholar
  33. Munck L, Karisson KE, Hagberg A, Eggum BO (1971) Gene for improved nutritional value in barley seed protein. Science 168:985–987. doi: 10.1126/science.168.3934.985 CrossRefGoogle Scholar
  34. Munsell Color Company (1957) Nickerson color fan. Maximum chromas-40 Hues. Munsell colour company InC, BaltimoreGoogle Scholar
  35. National Meteorological Agency of Ethiopia (NMSAE). Meteorological research report series (2006) Climatic and agroclimatic resources of Ethiopia, vol 1, no 1, Addis Ababa, EthiopiaGoogle Scholar
  36. Negassa M (1985a) Geographic distribution and genotypic diversity of resistance to powdery mildew of barley in Ethiopia. Hereditas 102:113–121. doi: 10.1111/j.1601-5223.1985.tb00472.x CrossRefGoogle Scholar
  37. Negassa M (1985b) Pattern of phenotypic diversity in an Ethiopian barley collection, and the Arsi-Bale highland as a center of origin of barley. Hereditas 102:139–150. doi: 10.1111/j.1601-5223.1985.tb00474.x CrossRefGoogle Scholar
  38. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  39. Orabi J, Backes G, Wolday A, Yahyaoui A, Jahoor A (2007) The horn of Africa as a centre of barley diversification and a potential domestication site. Theor Appl Genet 114:1117–1127. doi: 10.1007/s00122-007-0505-5 CrossRefPubMedGoogle Scholar
  40. Orlov AA (1929) The barley of Abyssinia and Eritrea. Bull Appl Bot Genet Plant Breed 20:283–345Google Scholar
  41. Papa R, Attene G, Barcaccia G, Ohgata A, Konishi T (1998) Genetic diversity in landrace populations of Hordeum vulgare L. from Sardinia, Italy, as revealed by RAPDs, isozymes and morphophenological traits. Plant Breed 117:523–530. doi: 10.1111/j.1439-0523.1998.tb02201.x CrossRefGoogle Scholar
  42. Parsons BJ, Newbury HJ, Jackson MT, Ford-Lloyd BV (1999) The genetic structure and conservation of aus, aman and boro rices from Bangladesh. Genet Resour Crop Evol 46:587–598. doi: 10.1023/A:1008749532171 CrossRefGoogle Scholar
  43. Qualset CO (1975) Sampling germplasm in a center of diversity: an example of disease resistance in Ethiopian barley. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge Univiversity Press, Cambridge, pp 81–96Google Scholar
  44. Rodriguez M, Rau D, Papa R, Attene G (2007) Genotype by environment interactions in barley (Hordeum vulgare L.): different responses of landraces, recombinant inbred lines and varieties to Mediterranean environment. Euphytica 163:231–247. doi: 10.1007/s10681-007-9635-8 CrossRefGoogle Scholar
  45. SAS Institute, Inc (1995) JMP software ver 3.1.5Google Scholar
  46. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  47. Takahashi R (1955) The origin and evolution of cultivated barley. Adv Genet 7:227–266. doi: 10.1016/S0065-2660(08)60097-8 CrossRefGoogle Scholar
  48. Takahashi R (1983) Catalogue of the barley germplasm preserved at the Okayama University. Institute of Agricultural and Biological Sciences, Okoyama University, KurashikiGoogle Scholar
  49. Teshome A, Brown AHD, Hodgkin T (2001) Diversity in landraces of cereal and legume crops. Plant Breed Rev 21:221–261Google Scholar
  50. Tolbert DM, Qualset CO, Jain SK, Craddock JC (1979) A diversity analysis of a world collection of barley. Crop Sci 19:789–794CrossRefGoogle Scholar
  51. Vavilov NI (1926) Studies in the origin of cultivated plants. Bull Appl Bot Genet Plant Breed 16:1–248Google Scholar
  52. Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:1–366Google Scholar
  53. von Bothmer R, Sato K, Komatsudam T, Yasuda S, Fischbeck G (2003) The domestication of cultivated barley. In: von Bothmer R, van Hintum T, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier Science BV, Amsterdam, pp 9–27CrossRefGoogle Scholar
  54. Ward DJ (1962) Some evolutionary aspects of certain morphological characters in a world collection of barley. USDA-tech bull 1276Google Scholar
  55. Webster RK, Jackson LF, Schaller CW (1980) Source of resistance in barley to Rhynchosporium secalis. Plant Dis 64:88–90Google Scholar
  56. Weltzien E (1988) Evaluation of barley (Hordeum vulgare L.) landrace populations originating from different growing regions in the Near East. Plant Breed 101:95–106. doi: 10.1111/j.1439-0523.1988.tb00273.x CrossRefGoogle Scholar
  57. Weltzien E, Fischbeck G (1990) Performance and variability of local barley landraces in Near-Eastern environments. Plant Breed 104:58–67. doi: 10.1111/j.1439-0523.1990.tb00403.x CrossRefGoogle Scholar
  58. Wiberg A (1974) Sources of resistance to powdery mildew in barley. Hereditas 78:1–40. doi: 10.1111/j.1601-5223.1974.tb01426.x CrossRefPubMedGoogle Scholar
  59. Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1997) POPGENE (version 1.31), the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, EdmontonGoogle Scholar
  60. Yitbarek S, Berhane L, Fikadu A, van Leur JAG, Grando S, Ceccarelli S (1998) Variation in Ethiopian barley landrace populations for resistance to barley leaf scald and net blotch. Plant Breed 117:419–423. doi: 10.1111/j.1439-0523.1998.tb01966.x CrossRefGoogle Scholar
  61. Zeng YW, Shen SQ, Li ZC, Yang Z, Wang XK, Zhang HL, Wen GS (2003) Ecogeographic and genetic diversity based on morphological characters of indigenous rice (Oryza sativa L.) in Yunnan, China. Genet Resour Crop Evol 50:566–577Google Scholar
  62. Zhang Q, Webster RK, Allard RW (1987) Geographical distribution and association between resistance to four races of Rhynchosporium secalis. Phytopathol 77:352–357. doi: 10.1094/Phyto-77-352 CrossRefGoogle Scholar
  63. Zohary D, Hopf M (1993) Domestication of plants in the Old World. The origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. Clarendon Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Tesema Tanto Hadado
    • 1
    • 2
  • Domenico Rau
    • 1
    • 3
  • Elena Bitocchi
    • 1
  • Roberto Papa
    • 1
  1. 1.Dipartimento di Scienze Ambientali e delle Produzioni VegetaliUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Institute of Biodiversity ConservationAddis AbabEthiopia
  3. 3.Dipartimento di Scienze Agronomiche e Genetica Vegetale AgrariaUniversità degli Studi di SassariSassariItaly

Personalised recommendations