Genetic Resources and Crop Evolution

, Volume 56, Issue 4, pp 499–506 | Cite as

Genetic diversity of the D-genome in T. aestivum and Aegilops species using SSR markers

  • M. R. Naghavi
  • M. J. Aghaei
  • A. R. Taleei
  • M. Omidi
  • J. Mozafari
  • M. E. Hassani
Research Article


Simple sequence repeats (SSRs), highly dispersed nucleotide sequences in genomes, were used for germplasm analysis and estimation of the genetic relationship of the D-genome among 52 accessions of T. aestivum (AABBDD), Ae. tauschii (DtDt), Ae. cylindrica (CCDcDc) and Ae. crassa (MMDcr1Dcr1), collected from 13 different sites in Iran. A set of 21 microsatellite primers, from various locations on the seven D-genome chromosomes, revealed a high level of polymorphism. A total of 273 alleles were detected across all four species and the number of alleles per each microsatellite marker varied from 3 to 27. The highest genetic diversity occurred in Ae. tauschii followed by Ae. crassa, and the genetic distance was the smallest between Ae. tauschii and Ae. cylindrica. Data obtained in this study supports the view that genetic variability in the D-genome of hexaploid wheat is less than in Ae. tauschii. The highest number of unique alleles was observed within Ae. crassa accessions, indicating this species as a great potential source of novel genes for bread wheat improvement. Knowledge of genetic diversity in Aegilops species provides different levels of information which is important in the management of germplasm resources.


Aegilops crassa Ae. cylindrica Ae. tauschii D-genome Genetic diversity SSR T. aestivum 



The authors would like to acknowledge the Iran National Science Foundation (INSF) for the financial support of this work, through a grant No. 83161. We also thank Seed and Plant Improvement Institute, Karaj, Iran, for providing the accessions. In addition, the authors wish to thank Prof. R.A. McIntosh for critical reading of this manuscript.


  1. Appels R, Lagudah ES (1990) Manipulation of chromosomal segments from wild wheat for the improvement of bread wheat. Aust J Plant Physiol 17:253–266CrossRefGoogle Scholar
  2. Assefa S, Fehrmann H (2004) Evaluation of Aegilops tauschii Coss. for resistance to wheat stem rust and inheritance of resistance genes in hexaploid wheat. Genet Resour Crop Evol 51:663–669. doi: 10.1023/B:GRES.0000024657.20898.ed CrossRefGoogle Scholar
  3. Badaeva ED, Friebe B, Zoshchuk SA, Zelenin AV, Gill BS (1998) Molecular cytogenetic analysis of tetraploid and hexaploid Aegilops crassa. Chromosome Res 6:629–637. doi: 10.1023/A:1009257527391 PubMedCrossRefGoogle Scholar
  4. Caldwell K, Dvorak J, Lagudah ES, Akhunov E, Luo MC, Wolters P, Powell W (2004) Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor. Genetics 167:941–947. doi: 10.1534/genetics.103.016303 PubMedCrossRefGoogle Scholar
  5. Dudnikov A, Kawahara T (2006) Aegilops tauschii: genetic variation in Iran. Genet Resour Crop Evol 53:579–586. doi: 10.1007/s10722-004-2681-3 CrossRefGoogle Scholar
  6. Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670. doi: 10.1007/s001220050942 CrossRefGoogle Scholar
  7. Dubkovsky J, Dvorak J (1995) Genome origin of Triticum cylindricum, Triticum triunciale, and Triticum ventricosum (Poaceae) inferred from variation in repeated nucleotide sequences: a methodological study. Am J Bot 81:1327–1335. doi: 10.2307/2445408 CrossRefGoogle Scholar
  8. Eastwood RF, Lagudah ES, Appels R, Hannah M, Kollmorgen JF (1991) Triticum tauschii: a novel source of resistance to cereal cyst nematode (Heterodera avenae). Aust J Agric Res 42:69–77Google Scholar
  9. El Bouhssini M, Benlhabib O, Nachit MM, Houari A, Bentika A, Nsarellah N, Lhaloui S (1998) Identification in Aegilops species of resistant sources to Hessian fly (Diptera: Cecidomyiidae) in Morocco. Genet Resour Crop Evol 45:343–345. doi: 10.1023/A:1008675029389 CrossRefGoogle Scholar
  10. Farooq S, Iqbal N, Asghar M, Shah TM (1992) Intergeneric hybridization for wheat improvement VI. Production of salt tolerant germplasm through crossing wheat (Triticum aestivum) with Aegilops cylindrica and its significance in practical agriculture. J Genet Plant Breed 46:125–132Google Scholar
  11. Gandilyan PA, Jaaska VE (1980) A stable introgressive hybrid from hybridization between Aegilops cylindrica host and Triticum aestivum L. Genetika 16:1052–1058Google Scholar
  12. Gianibelli MC, Gupta RB, Lafiandra D, Margiotta B, MacRitchie F (2001) Polymorphism of high M r glutenin subunits in Triticum tauschii: characterization by chromatography and electrophoretic methods. J Cereal Sci 33:39–52. doi: 10.1006/jcrs.2000.0328 CrossRefGoogle Scholar
  13. Gianibelli MC, Wrigley CW, MacRitchie F (2002) Polymorphism of low M r glutenin subunits in Triticum tauschii. J Cereal Sci 35:277–286. doi: 10.1006/jcrs.2001.0424 CrossRefGoogle Scholar
  14. Gorham J (1990) Salt tolerance in the Triticeae: K/Na discrimination in synthetic hexaploids wheats. J Exp Bot 41:623–627. doi: 10.1093/jxb/41.5.623 CrossRefGoogle Scholar
  15. Goryunova SV, Kochieva EZ, Chikida NN, Pukhalskyi VA (2004) Phylogenetic relationships and intraspecific variation of D-genome Aegilops L. as revealed by RAPD analysis. Russ J Genet 40:515–523. doi: 10.1023/B:RUGE.0000029154.79168.6f CrossRefGoogle Scholar
  16. Hassani ME (2004) Characterization of novel storage protein genes in wheat, PhD thesis. The University of SydneyGoogle Scholar
  17. Hoisington D, Khairallah M, Gonzalez-de-Leon D (1994) Laboratory protocols: CIMMYT applied molecular genetics laboratory, 2nd edn. D.F. CIMMYT, MexicoGoogle Scholar
  18. Iriki N, Kawakami A, Takata K, Kuwabara T, Ban T (2001) Screening relatives of wheat for snow mold resistance and freezing tolerance. Euphytica 122:335–341. doi: 10.1023/A:1013067832651 CrossRefGoogle Scholar
  19. Kerber ER, Dyck PL (1969) Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 11:639–647Google Scholar
  20. Kihara H, Yamashita K, Tanaka M (1965) Morphological, physiological, geographical and cytological studies in Aegilops and Triticum collected in Pakistan, Afghanistan, and Iran. Results of the 1955 Kyoto University Scientific Expedition 1:11–18Google Scholar
  21. Lelley T, Stachel M, Grausgruber H, Vollmann J (2000) Analysis of relationships between Aegilops tauschii and the D-genome of wheat utilizing microsatellites. Genome 43:661–668. doi: 10.1139/gen-43-4-661 PubMedCrossRefGoogle Scholar
  22. Lewis PO, Zaykin D (2001) Genetic Data Analysis: computer program for the analysis of allelic data. Version 1.0 (d16c).
  23. Linc G, Friebe BR, Kynast RG, Molnar-Lang M, Koszegi B, Sutka J, Gill BS (1999) Molecular cytogenetic analysis of Aegilops cylindrica host. Genome 42:497–503. doi: 10.1139/gen-42-3-497 PubMedCrossRefGoogle Scholar
  24. Liu CG, Wu YW, Hou H, Zhang C, Zhang Y (2002) Value and utilization of alloplasmic common wheats with Aegilops crassa cytoplasm. Plant Breed 121:407–410. doi: 10.1046/j.1439-0523.2002.755374.x CrossRefGoogle Scholar
  25. Ma H, Singh RP, Mujeeb-Kazi A (1995) Resistance to stripe rust in Triticum turgidum, T. tauschii, and their synthetic hexaploids. Euphytica 82:117–124. doi: 10.1007/BF00027057 CrossRefGoogle Scholar
  26. Mackie AM, Sharp PJ, Lagudah ES (1996) The nucleotide and derived amino acid sequence of a HMW glutenin gene from Triticum tauschii and comparison with those from the D-genome of bread wheat. J Cereal Sci 24:73–78. doi: 10.1006/jcrs.1996.0039 CrossRefGoogle Scholar
  27. McFadden ES, Sears ER (1946) The origin of Triticum speltoides and its free–threshing hexaploid relatives. J Hered 37:81–89Google Scholar
  28. Mujeeb-Kazi A, Rosas V, Roldan S (1996) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. × T. tauschii; 2n = 6× = 42, AABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Evol 43:129–134. doi: 10.1007/BF00126756 CrossRefGoogle Scholar
  29. Murai K, Tsunewaki K (1993) Photoperiod-sensitive cytoplasmic male sterility in wheat with Ae. crassa cytoplasm. Euphytica 67:41–48. doi: 10.1007/BF00022723 CrossRefGoogle Scholar
  30. Murphy JP, Griffey CA, Finney PL, Leath S (1997) Agronomic and grain quality evaluations of Triticum aestivum × Aegilops tauschii backcross populations. Crop Sci 37:1960–1965Google Scholar
  31. Naghavi MR, Mardi M, Pirseyedi SM, Kazemi M, Potki P, Ghaffari MR (2007) Comparison of genetic variation among accessions of Aegilops tauschii using AFLP and SSR markers. Genet Resour Crop Evol 54:237–240. doi: 10.1007/s10722-006-9143-z CrossRefGoogle Scholar
  32. Nakai Y (1989) D-genome donors for Aegilops crassa (MMDD, MMDDDD) and Ae. vavilovii (DDMMSS) deduced from esterase analysis by isoelectric focusing. Jpn J Genet 57:349–360. doi: 10.1266/jjg.57.349 CrossRefGoogle Scholar
  33. Ogihara Y, Futami K, Tsuji K, Murai K (1997) Alloplasmic wheats with Aegilops crassa cytoplasm which express photoperiod-sensitive homeotic transformations of anthers, show alterations in mitochondrial DNA structure and transcription. Mol Gen Genet 255:45–53. doi: 10.1007/s004380050473 PubMedCrossRefGoogle Scholar
  34. Okuno K, Ebana K, Noov B, Yoshida H (1998) Genetic diversity of Central Asian and North Caucasian Aegilops species as revealed by RAPD markers. Genet Resour Crop Evol 45:389–394. doi: 10.1023/A:1008660001263 CrossRefGoogle Scholar
  35. Pester TA, Ward SM, Fenwick AL, Westra P, Nissen SJ (2003) Genetic diversity of jointed goatgrass (Aegilops cylindrica) determined with RAPD and AFLP markers. Weed Sci 51:287–293. doi: 10.1614/0043-1745(2003)051[0287:GDOJGA]2.0.CO;2 CrossRefGoogle Scholar
  36. Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592Google Scholar
  37. Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW, Röder MS (2000) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106. doi: 10.1007/s001220051456 CrossRefGoogle Scholar
  38. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  39. Saghai-Maroof MA, Soliman K, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018. doi: 10.1073/pnas.81.24.8014 PubMedCrossRefGoogle Scholar
  40. Schachtman DP, Munns R, Whitecross MI (1991) Variation in sodium exclusion and tolerance in Triticum tauschii. Crop Sci 31:992–997Google Scholar
  41. Snyder JR, Mallory-Smith CA, Balter S, Hansen JL, Zemetra RS (2000) Seed production on Triticum aestivum by Aegilops cylindrica hybrids in the field. Weed Sci 48:588–593. doi: 10.1614/0043-1745(2000)048[0588:SPOTAB]2.0.CO;2 CrossRefGoogle Scholar
  42. Villareal RL, Mujeeb-Kazi A, Fuentes-Davila G, Rajaram S (1996) Registration of four synthetic hexaploid wheat germplasm lines derived from Triticum turgidum × T. tauschii crosses and resistant to karnal bunt. Crop Sci 36:218Google Scholar
  43. Watanabe N, Mastui K, Furuta Y (1994) Uniformity of the alpha-amylase isozymes of Aegilops cylindrica introduced into North America: comparisons with ancestral Eurasian accessions. In: Wang K, Jensen B, Jaussi C (eds) Proc 2nd Int Wheat Symp. Utah State University, USAGoogle Scholar
  44. Yan Y, Hsam SLK, Yu J, Jiang Y, Zeller FJ (2003a) Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by Sodium Dodecyl Sulphate (SDS-PAGE), Acid Polyacrylamide Gel (A-PAGE) and Capillary Electrophoresis. Euphytica 130:377–385. doi: 10.1023/A:1023062316439 CrossRefGoogle Scholar
  45. Yan Y, Hsam SLK, Yu J, Jiang Y, Zeller FJ (2003b) Genetic polymorphisms at Gli-D t gliadin loci in Aegilops tauschii as revealed by acid polyacrylamide gel and capillary electrophoresis. Plant Breed 122:120–124. doi: 10.1046/j.1439-0523.2003.00824.x CrossRefGoogle Scholar
  46. Zhang HB, Dvorak J (1992) The genome origin and evaluation of hexaploid Triticum crassum and Triticum syriacum determined from variation in repeated nucleotide sequences. Genome 35:509–515Google Scholar
  47. Zohary D, Harlan JR, Vardi A (1969) The wild diploid progenitors of wheat and their breeding value. Euphytica 18:58–65Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. R. Naghavi
    • 1
  • M. J. Aghaei
    • 2
  • A. R. Taleei
    • 1
  • M. Omidi
    • 1
  • J. Mozafari
    • 2
  • M. E. Hassani
    • 3
  1. 1.Agronomy and Plant Breeding Department, Agricultural CollegeUniversity of TehranKarajIran
  2. 2.Seed and Plant Improvement Institute, National Plant Gene Bank of IranKarajIran
  3. 3.Horticultural Department, Agricultural CollegeUniversity of TehranKarajIran

Personalised recommendations