Genetic Resources and Crop Evolution

, Volume 55, Issue 1, pp 133–141 | Cite as

Comparative genetic diversity of Triticum aestivum–Triticum polonicum introgression lines with long glume and Triticum petropavlovskyi by AFLP-based assessment

  • A. S. M. G. Masum Akond
  • N. Watanabe
  • Y. Furuta
Research Article


Genetic diversity of a set of introgression lines of Triticum aestivum L./T. polonicum L. with long glume and T. petropavlovskyi Udacz. et Migusch. were analyzed by Amplified Fragments Length Polymorphism (AFLP). Small-scale bulk breeding method was applied throughout until F6 generation to develop the introgression lines. Thirty-eight hexapolid F7 plants with long glume phenotype and their parents were subjected to AFLP analysis by four primer combinations. A total of 47 polymorphic loci were detected between the parents, 15 of them were introgressed across the 38 lines. It was hypothesized that approximately 50% of A or B genomes associated polymorphic loci were introgressed. The variation of introgression lines was limited within the diversity between their parents, T. aestivum L. cv. Novosibirskaya 67 (N67) and T. polonicum L. cv. IC12196. N67 was closer to 38 introgression lines than that of IC12196. The UPGMA cluster and principal coordinate analysis (PCO) grouping showed 0.84 to 0.98 similarity values between N67 and the introgression lines. Eleven T. petropavlovskyi accessions were distinguished from introgression lines with UPGMA clusters and PCO groupings, and T. petropavlovskyi was located between the introgressions lines and IC12196. Several introgression lines resembled with T. petropavlovskyi for awning and glume length. The genetic variation among 38 introgression lines was much wider than that of T. petropavlovskyi. We concluded that T. petropavlovskyi was established by intensive selection of hybrid between T. aestivum/T. polonicum.


AFLP Bulk breeding method Introgression Long glume Triticum aestivum Triticum petropavlovskyi Triticum polonicum 



A.S.M.G.M.A. deeply appreciated with the Scholarship provided by the Ministry of Education, Science, Culture and Sports, Japanese Government.


  1. Akond ASMGM, Watanabe N (2005) Genetic variation among Portuguese landraces of Arrancada wheat and Triticum petropavlovskyi by AFLP-based assessment. Genet Resour Crop Evol 52:619–628CrossRefGoogle Scholar
  2. Alston FH, Jones JK (1968) Variation in transmission of univalent chromosomes from pentaploid wheat hybrid. Can J Genet Cytol 10:908–912Google Scholar
  3. Chen Q, Sun Y, Dong Y (1985) Cytogenetic studies on interspecific hybrids of Xinjiang wheat. Acta Agron Sin 11:23–28Google Scholar
  4. Chen PD, Liu DJ, Pei GZ, Qi LL, Huang L (1988) The chromosome constitution of thee endemic hexaploid wheats in Western China. In: Miller TE, Koebner RMD (eds) Proceedings of 7th international wheat genetics symposium, 13–19 July, 1988. Cambridge, pp 75–80Google Scholar
  5. Dorofeev VF, Filatenko AA, Migushova EF, Udachin RA, Jakubziner MM (1979) Flora of cultivated plants. Wheat, vol 1. Kolos, Leningrad, pp 1–348Google Scholar
  6. Efremova TT, Maystrenko OI, Laikova LI, Arbuzova VS, Popova OM (2000) Comparative genetic analysis of hexaploid wheats Triticum petropavlovskyi Udacz. et Migusch. and Triticum aestivum L. Russ J Genet 36:1142–1148Google Scholar
  7. Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrica 53:325–338Google Scholar
  8. Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270Google Scholar
  9. Jakubtsiner MM (1959) K poznaniyu pshenits Kitaja/A contribution to the knowledge of the wheats of China. Bot J 44:1425–1436 (in Russian)Google Scholar
  10. Kihara H (1924) Cytologische und genetische Studien bei wichtigen Getreidearten mit besonderer Rücksicht auf das Verhalten der Chromosomen und die Sterileität in den Bastarden. Mem Coll Sci Kyoto Imp Univ Ser B 1:1–200Google Scholar
  11. Kihara H, Wakakuwa S (1935) Weitere Üntersuchungen über die pentaploiden Triticum-Bastarde. IV. Jpn J Bot 7:381–387Google Scholar
  12. Liu GX, Zhou YH, Zheng YL, Yang R, Ding CB (2002a) The reaction of hormone gibberellic acid in dwarfing Polish wheat (Triticum turgidum conv. polonicum) from Tulufan, Xinjiang. J Sichuan Agric Univ 20:81–83Google Scholar
  13. Liu GX, Zhou YH, Zheng YL, Yang RW, Ding C (2002b) Morphological and cytological studies of dwarfing polish wheat (Triticum turgidum conv. polonicum) from Xinjiang China. J Sichuan Agric Univ 20:189–193Google Scholar
  14. Sokal R, Michener C (1958) A statistical method for statistical relationships. Univ Kansas Sci Bull 38:1409–1438Google Scholar
  15. Udaczin RA, Miguschova EF (1970) Novoe v poznanii roda Triticum L. Vestnik S.-Kh. Nauki 9:20–24 (in Russian)Google Scholar
  16. Vos PRH, Bleeker M, Rejians M, de Lee T, Hornes M, Freijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA finger printing. Nucleic Acid Res 23:4407–4414PubMedCrossRefGoogle Scholar
  17. Wang H-J, Huang X-Q, Röder MS, Börner A (2002) Genetic mapping of loci determining long glumes in the genus Triticum. Euphytica 123:287–293CrossRefGoogle Scholar
  18. Watanabe N (2004) Triticum polonicum IC12196: a possible alternative source of GA3-insensitive semi-dwarfism. Cereal Res Commun 32:429–434Google Scholar
  19. Watanabe N, Imamura I (2002) The inheritance and chromosomal location of a gene for long glume phenotype in Triticum petropavlovskyi Udacz. et Migusch. J Genet Breed 57:221–227Google Scholar
  20. Watanabe N, Yotani Y, Furuta Y (1996) The inheritance and chromosomal location of a gene for long glume in durum wheat. Euphytica 90:235–239CrossRefGoogle Scholar
  21. Watanabe N, Yotani Y, Anada M (1998) Inheritance and the effects of a gene for long glume, a key character for taxonomy. In: Jaradat AA (eds) Triticeae III. Science Publishers Inc., Enfield, pp. 103–108Google Scholar
  22. Watanabe N, Sekiya T, Sugiyama K, Yamagishi Y, Imamura I (2002) Telosomic mapping of the homoeologous genes for the long glume phenotype in tetraploid wheat. Euphytica 128:129–134CrossRefGoogle Scholar
  23. Watanabe N, Bannikova SV, Goncharov NP (2004) Inheritance and chromosomal location of the genes for long glume phenotype found in Portuguese landraces of hexaploid wheat, ‘Arrancada’. J Genet Breed 58:273–278Google Scholar
  24. Yang WY, Yen C, Yang JL (1992) Cytogenetic study on the origin of some special Chinese landraces of common wheat. Wheat Inf Serv 75:14–20Google Scholar
  25. Yang RW, Zhou YH, Zheng YL (2000a) Gliadin analysis of some peculiar wheats. J Sichuan Agric Univ 18:15–17Google Scholar
  26. Yang RW, Zhou YH, Zheng YL, Hu C (2000b) Genetic differences and the relationship of gliadin between Triticum polonicum and Triticum petropavlovskyi. J Triticeae Crops 20:1-5Google Scholar
  27. Yang RW, Zhou YH, Zheng YL (2001) Analysis on chromosome C-banding of dwarf Polish wheat (Triticum polonicum). J Sichuan Agric Univ 19:112–114Google Scholar
  28. Zabeau M, Vos P (1993) Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application 92402629.7 Publ. N. 0 534 858 A1Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. S. M. G. Masum Akond
    • 1
  • N. Watanabe
    • 2
  • Y. Furuta
    • 3
  1. 1.United Graduate School of AgricultureGifu UniversityGifuJapan
  2. 2.College of AgricultureIbaraki UniversityInashikiJapan
  3. 3.Faculty of Applied Biological SciencesGifu UniversityGifuJapan

Personalised recommendations