Advertisement

Genetic Resources and Crop Evolution

, Volume 54, Issue 3, pp 543–554 | Cite as

Simple sequence repeats marker polymorphism in emmer wheat (Triticum dicoccon Schrank): Analysis of genetic diversity and differentiation

  • Yifru Teklu
  • K. Hammer
  • M. S. Röder
Article

Abstract

Genetic diversity was investigated in 73 accessions of emmer wheat (Triticum dicoccon Schrank) from 11 geographical regions using a set of 29 simple-sequence repeat (SSR or microsatellite) markers, representing at least two markers for each chromosome. The SSR primers amplified a total of 357 different alleles with an average of 12.31 alleles per locus. The number of fragments detected by each primer ranged between 6 (Xgwm1066) and 21 (Xgwm268). Null alleles were detected in nine of the 29 primers used. A high level of gene diversity index was observed. Across the 29 primers, gene diversity ranged from 0.60 (Xgwm46) to 0.94 (Xgwm655), with a mean of 0.82. There was a highly significant correlation (r=0.882; p<0.01) between gene diversity index and the number of loci, showing the number of loci per se is a strong indicator of diversity. Analysis of genetic diversity within and among eleven geographical regions revealed most of the genetic diversity of the total sample resided within regions. The coefficient of gene differentiation (Gst = 0.27) showed that the genetic variation within and among the 11 geographical regions was 73 and 27%, respectively. High value of mean number of alleles per locus was found in Iran (4.86) followed by Morocco (4.10) and Armenia (4.03). On the contrary, lower mean number of alleles per locus was detected in Yemen (2.83). The average gene diversity index across regions ranged from 0.52 (Slovakia) to 0.67 (Morocco) with an average of 0.60. Multivariate techniques of principal component analysis and clustering were employed to examine genetic relationship among the 73 emmer wheat accessions vis-à-vis geographical regions of collections. The genetic distance coefficients for all possible 55 pairs of regional comparisons ranged from 0.63 (between Iran and Armenia, Georgia and Azerbaijan, Georgia and Slovakia) to 0.97 (between Morocco and Yemen, Spain and Georgia, and Turkey and Iran) with a mean of 0.82. From the PCA results, a two dimensional plot of PC1 versus PC2 was constructed. The scatter plot of the first two principal components which explained altogether 27% of the total variation depicted the presence of a clear pattern of geographical differentiation except in few cases like accessions from Caucasian region. Similar pattern of genetic relationships among accessions was observed in cluster analysis. The study provided genetic information of emmer wheat in relation to geographical regions of origin. The information could be utilized in crop improvement, germplasm conservation programs, and in further investigation.

Key words

Emmer wheat Gene differentiation Genetic diversity Microsatellites Tetraploid wheats Triticum dicoccon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auricchio S., Occorsio P. and Silano V. (1982). Effects of gliadin-derived peptides from bread and durum wheat on small-intestine culture from rat fetus and celiac children. Pediatr. Res. 16: 1004–1010PubMedCrossRefGoogle Scholar
  2. Barcaccia G., Molinari L., Porfiri O. and Veronesi F. (2002). Molecular characterization of emmer (Triticum dicoccon Schrank) Italian landraces. Genet. Resour. Crop Evol. 49: 415–426CrossRefGoogle Scholar
  3. Bertin P., Gregoire D., Massart S. and de Froidmont D. (2001). Genetic diversity among European cultivated spelt revealed by microsatellites. Theor. Appl. Genet. 102: 148–156CrossRefGoogle Scholar
  4. Bretting P.K. and Widrlechner M.P. (1995). Genetic markers and plant genetic resources. Plant Breed. Rev. 13: 11–86Google Scholar
  5. Cavalli-Sforza L.L., Menozzi P. and Piazza P. (1994). History and Geography of Human Genes. Princeton University Press, Princeton, NYGoogle Scholar
  6. Chowdhury M.A. and Slinkard A.E. (2000). Genetic diversity in grasspea (Lathyrus sativus L.). Genet. Resour. Crop Evol. 47: 163–169CrossRefGoogle Scholar
  7. Corazza L., Pasquini M. and Perrino P. (1986). Resistance to rusts and powdery mildew in some strains of Triticum monococcum L. and Triticum dicoccum Schubler cultivated in Italy. Genet. Agrar. 40: 243–254Google Scholar
  8. D’Antuono L.F. (1989). I1 farro; areali di coltivazionecaratteristiche agronomicheutilizzazione e prospettive colturali. L’Informatore Agrario 45: 49–57Google Scholar
  9. Dai X. and Zhang Q. (1989). Genetic diversity of six isozyme loci in cultivated barley of Tibet. Theor. Appl. Genet. 78: 281–286CrossRefGoogle Scholar
  10. Damania A.B., Hakim S. and Moualla M.Y. (1992). Evaluation of variation in Triticum dicoccum for wheat improvement in stress environments. Hereditas 116: 163–166Google Scholar
  11. Devos K.M., Bryan G.J., Collins A.J. and Gale M.D. (1995). Application of two microsatellite sequences in wheat storage proteins as molecular markers. Theor. Appl. Genet. 90: 247–252CrossRefGoogle Scholar
  12. Dice L.R. (1945). Measures of the amount of ecologic association between species. Ecology 26: 297–302CrossRefGoogle Scholar
  13. Donini P., Stephenson P., Bryan G.J. and Koebner R.M.D. (1998). The potential of microsatellites for high throughput genetic diversity assessment in wheat and barley. Genet. Resour. Crop Evol. 45: 415–421CrossRefGoogle Scholar
  14. Dorofeev V.F., Filatenko A.A., Migušova E.F., Udain R.A. and Jakubciner M.M. 1979. Pšenica. Kul’turnaja Flora SSSR, Vol. 1. Leningrad, Russia, 347 pp.Google Scholar
  15. Dvorak J., Luo M.C., Yang Z.L. and Zhang H.B. (1998). The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 97: 657–670CrossRefGoogle Scholar
  16. Eujayl I., Sorrells M., Baum M., Wolters P. and Powell W. (2001). Assessment of genotypic variation among cultivated durum wheat based on EST-SSRS and genomic SSRS. Euphytica 119: 39–43CrossRefGoogle Scholar
  17. Fahima T., Röder M.S., Grama A. and Nevo E. (1998). Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor. Appl. Genet. 96: 187–195CrossRefGoogle Scholar
  18. Fahima T., Röder M.S., Wendehake K., Kirzhner V.M. and Nevo E. (2002). Microsatellite polymorphism in natural populations of wild emmer wheatTriticum dicoccoides in Israel. Theor. Appl. Genet. 104: 17–29PubMedCrossRefGoogle Scholar
  19. Feldman M. (1979). Wheats (Triticum spp.). In: Simmonds, N.W. (eds) Evolution of Crop Plants, pp. Longman Group Limited, LondonGoogle Scholar
  20. Figliuolo G. and Perrino P. (2004). Genetic diversity and intra-specific phylogeny of Triticum turgidum L. subsp. dicoccon (Schrank) Thell. revealed by RFLPs and SSRs. Genet. Resour. Crop Evol. 51: 519–527CrossRefGoogle Scholar
  21. Filatenko A.A., Grau M., Knüpffer H. and Hammer K. (2001). Wheat Classification – John Percival's contribution and the approach of the Russian School. The Linnean Society of London, Special Issue No. 3: 165–184Google Scholar
  22. Fulton T.M., Chunwongse J. and Tanksley D. (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207–209Google Scholar
  23. Gökgöl M. (1955). Bugdaylarin Tansif Anahtari. Ziraat Vekaleti Yayin. No. 76, Istambul; TurkeyGoogle Scholar
  24. Hammer K. and Perrino P. (1984). Further information on farro (Triticum monococcum L. and Triticum dicoccon Schrank) in South Italy. Kulturpflanze 32: 143–151CrossRefGoogle Scholar
  25. Hammer K., Filatenko A.A., Al-Khanjari S., Al-Maskri A.Y. and Buerkert A. (2004). Emmer (Triticum dicoccon Schrank) in Oman. Genet. Resour. Crop Evol. 51: 111–113CrossRefGoogle Scholar
  26. Harlan J.R. (1955). The great plains region (Part 4). Agric. Food Chem. 3: 29–31Google Scholar
  27. Harlan J.R. (1971). Agricultural origins: centers and noncenters. Science 174: 468–474CrossRefPubMedGoogle Scholar
  28. Harlan J.R. and Zohary D. (1966). Distribution of wild wheats and barley. Science 153: 1074–1080CrossRefPubMedGoogle Scholar
  29. Helbaeck H. (1959). Domestication of food plants in the old world. Science 130: 365–372CrossRefGoogle Scholar
  30. Huang X.Q., Börner A., Röder M.S. and Ganal M.W. (2002). Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor. Appl. Genet. 105: 699–707PubMedCrossRefGoogle Scholar
  31. Koenig R. and Gepts P. (1989). Allozyme diversity in wild Phaseolus vulgaris: further evidence for two major centers of genetic diversity. Theor. Appl. Genet. 78: 809–817CrossRefGoogle Scholar
  32. Kresovich S., Williams J.G.K., McFerson J.R., Routman E.J. and Schaal B.A. (1992). Characterization of genetic identities and relationships of Brassica oleracea L. via a random amplified polymorphic DNA assay. Theor. Appl. Genet. 85: 190–196CrossRefGoogle Scholar
  33. Krivchenko V.I., Yamaleyev A.M., Isayev R.F. and Gorbunova V.Y. (1979). Role of wheat seed huskiness in bunt resistance. Mycol. Phytopathol. 13(4): 330–333Google Scholar
  34. Laghetti G., Piergiovanni A.R., Volpe N. and Perrino P. (1999). Agronomic performance of Triticum dicoccon Schrank and T. spelta L. accessions under Southern Italian conditions. Agr. Med. 129: 199–211Google Scholar
  35. Nei M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70: 3321–3323PubMedCrossRefGoogle Scholar
  36. Nei M. and Chesser R.K. (1983). Estimation of fixation and gene diversities. Ann. Hum. Genet. 47: 253–259PubMedGoogle Scholar
  37. Nei M. and Li W.H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269–5273PubMedCrossRefGoogle Scholar
  38. Nesbitt M. and Samuel D. (1996). From staple crop to extinction? The archaeology and history of the hulled wheats. In: Padulosi, S., Hammer, K. and Heller, J. (eds) Hulled Wheats, pp. IPGRI, RomeGoogle Scholar
  39. Peña-Chocarro L. 1996. In situ conservation of hulled wheat species: the case of Spain. In: Padulosi S., Hammer K. and Heller J.(eds) Hulled Wheats. Promoting the conservation and use of underutilized and neglected crops. Proc. of 1st Int. Workshop on Hulled Wheats, July, 21–22, 1995. Castelvecchio Pascoli, Lucca, Italy, pp. 129–146.Google Scholar
  40. Perrino P., Laghetti G., D’Antuono L.F., Al Ajlouni M., Kanbertay M., Szabó A.T. and Hammer K. 1996. Ecogeographical distribution of hulled wheat species. In: Padulosi S., Hammer K. and Heller J.(eds) Hulled wheats. Proc. Int. Workshop. Castelvecchio PascoliItaly, pp. 101–119.Google Scholar
  41. Pflüger L.A., Martín L.M. and Alvarez J.B. (2001). Variation in the HMW and LMW glutenin subunits from Spanish accessions of emmer wheat (Triticum turgidum ssp. dicoccum Schrank). Theor. Appl. Genet. 102: 767–772CrossRefGoogle Scholar
  42. Piergiovanni A.R. and Blanco A. (1999). Variation of HMW glutenin and γ-gliadin subunits in selected accessions of Triticum dicoccum (Schrank) and T. spelta (L.). Cereal Res. Commun. 27: 205–211Google Scholar
  43. Plaschke J., Ganal M.W. and Röder M.S. (1995). Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 91: 1001–1007CrossRefGoogle Scholar
  44. Röder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P. and Ganal M.W. (1998). A microsatellite map of wheat. Genetics 149: 2007–2023PubMedGoogle Scholar
  45. Röder M.S., Wendehake K., Korzun V., Bredemeijer G., Loborie D., Bertranel L., Isaac P., Rendell S., Jackson J., Cooke R.J., Vosman B. and Ganal M.W. (2002). Construction and analysis of a microsatellite-based database of European wheat varieties. Theor. Appl. Genet.: 163–169Google Scholar
  46. Rohlf F.J. 1998. NTSYS-pc: numerical taxonomy and multivariate analysis systemvers. 2.0. Applied Biostatistics Inc., New York.Google Scholar
  47. Serret M.D., Udupa S.M. and Weigand F. (1997). Assessment of genetic diversity of cultivated chickpea using microsatellite-derived RFLP markers: implications for origin. Plant Breed. 116(6): 573–578CrossRefGoogle Scholar
  48. Sharma H.C., Waines J.C. and Foster K.W. (1981). Variability in primitive and wild wheats for useful genetic characters. Crop Sci. 21: 555–559CrossRefGoogle Scholar
  49. Srivastava J.P. and Damania A.B. (1989). Use of collections for cereal improvement in semi-arid areas. In: Brown, A.H.D., Frankel, O.H., Marshall, D.R. and Williams, J.T. (eds) The Use of Plant Genetic Resources, pp 88–104. Cambridge University Press, UKGoogle Scholar
  50. Stallknecht G.F., Gilbertson K.M. and Romey J.E. (1997). Alternative wheat cereals as good grains: Einkorn, emmerspeltkamutand triticale. In: Janick, J. (eds) Progress in New Crops, pp 156–170. ASHS Press, Alexandria VAGoogle Scholar
  51. Szabó A.T. and Hammer K. 1996. Notes on the taxonomy of farro: Triticum monococcum, T. dicoccon and T. spelta. In: Padulosi S., Hammer K. and Heller J.(eds) Hulled Wheats. Promoting the Conservation and Use of Underutilized and Neglected Crops. Proc. of 1st Int. Workshop on Hulled Wheats, July, 21–22, 1995, Castelvecchio PascoliLuccaItaly, pp. 2–40.Google Scholar
  52. Tautz D. and Renz M. (1984). Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl. Acids Res. 23: 249–255Google Scholar
  53. Teklu Y. and Hammer K. 2006. Farmers perception and genetic erosion of Ethiopian tetraploid wheat landraces. Genet. Resour. Crop Evol. (in press).Google Scholar
  54. Teklu Y., Hammer K., Huang X.Q. and Röder M.S. 2006. Analysis of microsatellite diversity in Ethiopian tetraploid wheats. Genet. Resour. Crop Evol. (in press).Google Scholar
  55. Vavilov N.I. (1931). The Linnaean species as a system. Tr. po Prikl. Bot. Genet. Sel. [Bull. Appl. Bot. Genet. Sel.] 26(3): 109–134Google Scholar
  56. Vavilov N.I. 1964. World resources of cereals, legumes, flax cultivars and their utilization in breeding. Wheat. Nauka, Moskow and Leningrad.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Institute of Crop Science, Agro-biodiversity DepartmentUniversity of KasselWitzenhausenGermany
  2. 2.Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations