Genetic Resources and Crop Evolution

, Volume 54, Issue 2, pp 399–404 | Cite as

Assessment of Genetic Diversity among Finger Millet (Eleusine coracana (L.) Gaertn.) Accessions using Molecular Markers

  • B. Kalyana Babu
  • N. Senthil
  • S. Michael Gomez
  • K. R. Biji
  • N. S. Rajendraprasad
  • S. Satheesh Kumar
  • R. Chandra Babu


Finger millet (Eleusine coracana), an allotetraploid cereal, is widely cultivated in the arid and semiarid regions of the world. Being rich in protein and calcium, finger millet serves as an important staple food for rural populations in developing tropical countries where calcium deficiency and anemia are wide spread. Thirty-two finger millet genotypes were fingerprinted using 50 random amplified polymorphic DNA (RAPD) markers. Out of the total 529 loci generated using the 50 RAPD primers, 479 loci (91%) were polymorphic and informative to differentiate the accessions. Cluster analysis grouped the 32 finger millet accessions into two major clusters. Among the 32 finger millet genotypes, GEC 182 and CO 12 were distantly related with a low similarity index of 0.315. These two accessions also differed considerably in days to flowering and grain weight; GEC 182 is early flowering and has bold grains, while CO 12 is late flowering and has smaller grains. These two accessions with higher diversity at molecular level, phenology and grain weight will be ideal as parents in hybridization programme, to develop improved finger millet varieties suitable for peninsular region of India.


Eleusine coracana Finger millet Genetic diversity Jaccard’s similarity coefficient RAPDs 



Amplified Fragment Length Polymorphism


Random Amplified Polymorphic DNA


Restriction Fragment Length Polymorphism


Sequential Agglomerative Hierarchial Non overlapping


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal R.K., Brar D.S., Nandi S., Huang N. and Khush G.S. (1999). Phylogenetic relationships among Oryza species revealed by AFLP markers. Theor. Appl. Genet. 98: 1320–1328CrossRefGoogle Scholar
  2. Barbeau W.E. and Hilu K.W. (1993). Protein, calciumiron and aminoacid contents of selected wild and domesticated cultivars of finger millet. Plant Food Hum. Nutr. 43: 97–104CrossRefGoogle Scholar
  3. Beaumont V.H., Mantet J., Rochefort T.R. and Widholm J.M. (1996). Comparision of RAPD and RFLP markers for F2 generation in maize (Zea mays L.). Theor. Appl. Genet. 93: 606–612Google Scholar
  4. Blair M.W., Panaud O. and McCouch S.R. (1999). Inter simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and finger printing in rice (Oryza sativa L.). Theor. Appl. Genet. 98: 780–792CrossRefGoogle Scholar
  5. Chalmers K.J., Waugh R., Sprent J.I., Simons A.J. and Powell W. (1992). Detection of genetic variation between and within populations of Gliricidia sepium and Gliricidia maculata using RAPD markers. Genetics 69: 465–475Google Scholar
  6. Cooke R.J. (1995). Variety identification of crop plants. In: Skerrit, J.H. and Appels, R. (eds) New Diagnostics in Crop Science. Biotechnology in Agriculture No. 13, pp 33–63. CAB International, Wallingford, UKGoogle Scholar
  7. Dubrail P. and Charcosset A. (1998). Genetic diversity within and among maize populations: a comparison between isozyme and nuclear RFLP loci. Theor. Appl. Genet. 96: 577–587CrossRefGoogle Scholar
  8. Fakrudin B., Shashidhar H.E., Kulkarni R.S. and Hittalmani S. (2004). Genetic diversity assessment of finger milletEleusine coracana (Gaertn.), germplasm through RAPD analysis. PGR Newslett. 138: 50–54Google Scholar
  9. FAO 1995. Sorghum and Millets in Human Nutrition. FAO Food and Nutrition Series, No. 27.Google Scholar
  10. Fofana B., Vekemans V., DuJordin P. and Baudouin J.P. (1997). Genetic diversity in lima bean (Phaeseouls lunatus) as revealed by RAPD markers. Euphytica 95: 157–165CrossRefGoogle Scholar
  11. Gawel N.J. and Jarret R.L. (1991). A modified CTAB DNA extraction procedure for Musa and Ipomoea plant. Mol. Biol. Rep. 9: 262–266CrossRefGoogle Scholar
  12. Jaccard P. (1908). Nouvelles recherches surla distribution florale. Bull. Soc. Sci. Nat. 44: 223–270Google Scholar
  13. Kochert G. (1994). RFLP technology. In: Philips, R.L. and Vasil, I.K. (eds) DNA-Based Markers in Plants, pp 8–38. Kluwer Academic Publishers, DordrechtGoogle Scholar
  14. Koller B., Lehmann A., McDermott J.M. and Gessler C. (1993). Identification of apple cultivars using RAPD markers. Theor. Appl. Genet. 85: 901–904CrossRefGoogle Scholar
  15. Nilsson N.O., Hallden C., Hanson M., Hjerdin A. and Sall T. (1997). Comparing the distribution of RAPD and RFLP markers in a high density linkage map of sugar beet. Genome 40: 644–651PubMedGoogle Scholar
  16. Ramakrishna B.M., Shankare Gowda B.T., Katti S.M., Seetharam A., Mantur S.G., Viswanath S., Krishnappa M., Viswanath K.R., Krishnamurth B. and Jagadishwar K. (1996). Evaluation of Finger Millet Germplasm. Project Coordination Cell. ACRIP, GKVK, UAS, Bangalore, IndiaGoogle Scholar
  17. Reed C.F. (1976). Information summaries on 1000 economic plants. USDA, USAGoogle Scholar
  18. Rohlf R.J. (1990). NTSYS-PC, Numerical Taxonomy and Multivariate Analysis SystemVersion 1.8. Exeter Software, Setauket, New YorkGoogle Scholar
  19. Salimath S.S., de Oliveira A.C., Godwin I.D. and Bennetzen J.L. (1995). Assessment of genome origins and genetic diversity in the genus Eleusine with DNA markers. Genome 38: 757–763PubMedGoogle Scholar
  20. Smith J.S.C., Kresovich S., Hopkins M.S., Mitchell S.E., Dean R.E., Woodman W.L., Lee M. and Porter K. (2000). Genetic diversity among elite sorghum inbred lines assessed with simple sequence repeats. Crop Sci. 40: 226–232CrossRefGoogle Scholar
  21. Sokal R.R. and Michener C.D. (1958). A statistical method for evaluating systematic relationships. Univ. Kansas. Sci. Bull. 38: 1409–1438Google Scholar
  22. Subudhi P.K. and Huang N. (1999). RAPD mapping in a doubled haploid population of rice (Oryza sativa L.). Hereditas 130: 2–9CrossRefGoogle Scholar
  23. Virk P.S., Brian V.F.L, Jackson M.T. and Newbury J. (1995). Use of RAPD for the study of diversity within plant germplasm collections. Heredity 74: 170–179PubMedGoogle Scholar
  24. Vos P., Hogers R., Bleeker M., Reijans M., Hoernes M., Frijtersa A., Potjpeleman J., Kuiper M., Zabeau M. and Lee T. (1995). AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res. 23: 4407–4414PubMedCrossRefGoogle Scholar
  25. Williams J.G.K., Kubelik A.R., Livak K.J., Rafalski J.A. and Tingey S.V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18: 6531–6535PubMedCrossRefGoogle Scholar
  26. Williams J.G.K., Hanafey M.K., Rafalski J.A. and Tingey S.V. (1993). Genetic analysis using random amplified polymorphic DNA markers methods. Methods Enzyme Mol. 218: 704–740CrossRefGoogle Scholar
  27. Xiao J., Li J., Yuan L., McCough S.R. and Tanks S. (1996). Genetic diversity and its relationship to hybrid performance and heterosis as revealed by PCR based markers. Theor. Appl. Genet. 92: 637–643CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • B. Kalyana Babu
    • 1
  • N. Senthil
    • 2
  • S. Michael Gomez
    • 1
  • K. R. Biji
    • 1
  • N. S. Rajendraprasad
    • 1
  • S. Satheesh Kumar
    • 1
  • R. Chandra Babu
    • 1
  1. 1.Department of Plant Molecular Biology and Biotechnology, Centre for Plant Molecular BiologyTamil Nadu Agricultural UniversityCoimbatoreIndia
  2. 2.Centre for Plant Breeding and GeneticsTamil Nadu Agricultural UniversityCoimbatoreIndia

Personalised recommendations