Genetic Resources and Crop Evolution

, Volume 53, Issue 8, pp 1543–1552 | Cite as

Analysis of Genetic Variability in a Sample of the Durum Wheat (Triticum durum Desf.) Spanish Collection Based on Gliadin Markers

  • Edurne Aguiriano
  • Magdalena Ruiz
  • Rosario Fité
  • Jose M. Carrillo


In this work gliadin proteins were used to analyse the genetic variability in a sample of the durum wheat Spanish collection conserved at the CRF-INIA. In total 38 different alleles were identified at the loci Gli-A1, Gli-A3, Gli-B5, Gli-B1, Gli-A2 and Gli-B2. All the gliadin loci were polymorphic, possessed large genetic diversity and small and large differentiation within and between varieties, respectively. The Gli-A2 and Gli-B2 loci were the most polymorphic, the most fixed within varieties and the most useful to distinguish among varieties. Alternatively, Gli-B1 locus presented the least genetic variability out of the four main loci Gli-A1, Gli-B1, Gli-A2 and Gli-B2. The Gli-B1 alleles coding for the gliadin γ-45, associated with good quality, had an accumulated frequency of 69.7%, showing that the Spanish germplasm could be a good source for breeding quality. The Spanish landraces studied showed new gliadin alleles not catalogued so far. These new alleles might be associated with specific Spanish environment factors. The large number of new alleles identified also indicates that durum wheat Spanish germplasm is rather unique.


A-PAGE Genetic variability Germplasm Gliadin alleles Triticum durum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M.J. Asins and E.A. Carbonell, Distribution of genetic variability in a durum wheat world collection. Theor. Appl. Genet. 77 (1989) 287-294CrossRefGoogle Scholar
  2. J.M. Carrillo, J.F. Vázquez and J. Orellana, Relationship between gluten strength and glutenin proteins in durum wheat cultivars. Plant Breed. 104 (1990) 325-333CrossRefGoogle Scholar
  3. T. Damidaux, J.C. Autran, L. Grignac and P. Feillet, Mise en évidence de relations applicables en sélection entre lȁ9électrophorégramme des gliadins et les propriétés viscoélastiques du gluten de Triticum durum Desf. C.R. Acad. Sci. Ser. D 287 (1978) 701-704Google Scholar
  4. I. Felix, J.P. Martinant, M. Bernard, S. Bernard and G. Branlard, Genetic characterization of storage proteins in a set of F1-derived haploid lines in bread wheat. Theor. Appl. Genet. 92 (1996) 340-346CrossRefGoogle Scholar
  5. A.M. Kudryavtsev, Genetics of gliadin of spring durum wheat (Triticum durum Desf.). Russian J. Genet. 30 (1994) 69-75Google Scholar
  6. A.M Kudryavtsev, G. Boggini, S. Benedettelli and N.N. Illichevskii, Gliadin polymorphism and genetic diversity of modern Italian durum wheat. J. Genet. Breed. 50 (1996) 239-248Google Scholar
  7. D. Lafiandra and D.D. Kasarda, One and two-dimensional (two-pH) polyacrylamide gel electrophoresis in a single gel: separation of wheat proteins. Cereal Chem. 62 (1985) 314-319Google Scholar
  8. M.C. Martinez, Prolamins in durum wheat: inheritance and relation with pasta quality parameters. Madrid: Ingenieros Agrónomos (2001).Google Scholar
  9. E.V. Metakovsky, Gliadin allele identification in common wheat. 2. Catalogue of gliadin alleles in common wheat. J. Genet. Breed. 45 (1991) 325-344Google Scholar
  10. E.V. Metakovsky and G. Branlard, Genetic diversity of French common wheat germplasm studied using gliadin alleles. Theor. Appl. Genet. 96 (1998) 209-218CrossRefGoogle Scholar
  11. E.V. Metakovsky, M.G. Akhmedov and A.A. Sozinov, The genetic analysis of gliadin-encoding genes reveals clusters and remote genes. Theor. Appl. Genet. 73 (1986) 278-285CrossRefGoogle Scholar
  12. E.V. Metakovsky, D. Knezevic and B. Javornik, Gliadin allele composition of Yugoslav winter wheat cultivars. Euphytica 54 (1991) 285-295Google Scholar
  13. E.V. Metakovsky, M. Gomez, J.F. Vazquez and J.M. Carrillo, Large genetic diversity of Spanish common wheat as judged from gliadin alleles. Plant Breed. 119 (2000) 37-42CrossRefGoogle Scholar
  14. E.V. Metakovsky, N.E. Pogna, A.M. Biancardi and R. Redaelli, Gliadin allele composition of common wheat cultivars grown in Italy. J. Genet. Breed. 48 (1994) 55-66Google Scholar
  15. E.V. Metakovsky, C.W. Wrigley, F. Bekes and R.B. Gupta, Gluten polypeptides as useful genetic markers of dough quality in Australian wheats. Aust. J. Agric. Res. 41 (1990) 289-306CrossRefGoogle Scholar
  16. E.V. Metakovsky, P.K.W. Ng, V.M. Chernakov, N.E. Pogna and W. Bushuk, Gliadin alleles in Canadian western red strong wheat cultivars: use of two different procedures of acid polyacrylamide gel electrophoresis for gliadin separation. Genome 36 (1993) 743-749Google Scholar
  17. E.V. Metakovsky, V.M. Chernakov, V.P. Upelniek, R. Redaelli, M. Dardevet, G. Branlard and N.E. Pogna, Recombination mapping of minor ω-gliadin –coding loci on chromosome 1A of common wheat: a revision. J. Genet. Breed. 50 (1996) 277-286Google Scholar
  18. M. Nei, Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70 (1973) 3321-3323PubMedCrossRefGoogle Scholar
  19. M.T. Nieto-Taladriz, M. Ruiz, M.C. Martinez, J.F. Vazquez and J.M. Carrillo, Variation and classification of B low-molecular-weight glutenin subunit alleles in durum wheat. Theor. Appl. Genet. 95 (1997) 1155-1160CrossRefGoogle Scholar
  20. P.I. Payne, L.M. Holt, C.J. Lawrence and C.N. Law, The genetics of gliadin and glutenin the major storage proteins of the wheat endosperm. Qualit. Plant Foods Hum. Nutr. 31 (1982) 229-241CrossRefGoogle Scholar
  21. E.N. Pogna, E.V. Metakovsky, R. Redaelli, F. Raineri and T. Dachkevitch, Recombination mapping of Gli-5, a new gliadin-coding locus on chromosomes 1A an 1B in common wheat. Theor. Appl. Genet. 87 (1993) 113-121CrossRefGoogle Scholar
  22. J.S. Rogers, Measures of genetic similarity and genetic distance. Austin, TX: University of Texas (1972).Google Scholar
  23. F.J. Rohlf, NTSYS-pc Numerical Taxonomy and Multivariate Analysis System. NewYork: Exeter software (1992).Google Scholar
  24. M. Ruiz, Genetic analysis of the gluten proteins and their relation with quality in durum wheat (Triticum turgidum L.). Madrid: Ingenieros Agrónomos (1993).Google Scholar
  25. M. Ruiz and J.M. Carrillo, Linkage relationships between prolamin genes on chromosomes 1A and 1B in durum wheat. Theor. Appl. Genet. 87 (1993) 353-360CrossRefGoogle Scholar
  26. M. Ruiz, E.V. Metakovsky, M. Rodriguez-Quijano, J.F. Vazquez and J.M. Carrillo, Assessment of storage protein variation in relation to some morphological characters in a sample of Spanish landraces of common wheat (Triticum aestivum L. ssp. vulgare). Genet. Resour. our. Crop Evol. 49 (2002a) 371-382Google Scholar
  27. M. Ruiz, M. Rodriguez-Quijano, E.V. Metakovsky, F. Vazquez and J.M. Carrillo, Polymorphismvariation and genetic identity of Spanish common wheat germplasm based on gliadin alleles. Field Crops Res. 79 (2002b) 185-196CrossRefGoogle Scholar
  28. T.I. Sobko, Identification of a new locus which controls the synthesis of alcohol-soluble endosperm proteins in soft winter wheat. J. Agric. Sci. Kiev 7 (1984) 78-80Google Scholar
  29. S. Wright, Evolution and the Genetics of Populations, vol. 4. Variability within and Among Natural Populations. Chicago: University of Chicago Press (1978).Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Edurne Aguiriano
    • 1
  • Magdalena Ruiz
    • 1
  • Rosario Fité
    • 1
  • Jose M. Carrillo
    • 2
  1. 1.Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaCentro de Recursos FitogenéticosMadridSpain
  2. 2.Escuela Técnica Superior de Ingenieros Agrónomos, Dpto. BiotecnologíaCiudad UniversitariaMadridSpain

Personalised recommendations