Genetic Resources and Crop Evolution

, Volume 54, Issue 2, pp 295–308 | Cite as

Variability in European Maize (Zea mays L.) Landraces under High and Low Nitrogen Inputs

  • R. Alonso Ferro
  • I. Brichette
  • G. Evgenidis
  • Ch. Karamaligkas
  • J. Moreno-González


An European maize (Zea mays L.) landrace core collection (EMLCC) was formed with samples from several countries. Evaluation of the EMLCC may contribute to broad the genetic base of maize breeding programs. The objective of this study was to assess the variability of EMLCC under low nitrogen (N) in relation to high N input. Eighty-five landraces of the EMLCC, grouped in four maturity groups, and three check hybrids were evaluated for response to low (0 kg ha−1) and high (150 kg ha−1) N in Spain and Greece. Five plant size traits (plant height, ear height, leaf length, leaf width and leaf area index), two grain traits (1000-kernel weight and grain yield), and two agronomic traits [growing degree units (GDU) and lodging] were studied. Overall means of plant size and grain traits increased when genotypes were grown at 150-N relative to 0-N input. The relative increase for grain traits was smaller in landraces than in hybrids. This suggests that landraces had lower grain yield response to N supply compared to hybrids. Linear regressions of plant size traits on GDU indicated that vegetative development was primarily associated with flowering lateness. The maturity group was the main source of variation for all traits. Landrace variability within maturity groups was significant for all traits across environments, despite significant landrace × environment interactions. Estimates of genetic and genotype × environment variances, and heritabilities at both high and low N inputs were not significantly different from each other. However estimates were generally larger at high N. Genetic and phenotypic correlation coefficients between the two N levels were very high for all traits.

Key words

Correlated response to selection Genetic variances Maize landrace core collection Nitrogen input Zea mays 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bänziger M., Betran F.J. and Lafitte HR. (1997). Efficiency of high-Nitrogen selection environments for improving maize for low nitrogen target environments. Crop Sci. 37: 1103–1109CrossRefGoogle Scholar
  2. Bänziger M., Edmeades G.O., Beck D. and Bellon M. (2000). Breeding for Drought and Nitrogen Stress Tolerance in Maize: From Theory to Practice. CIMMYT, Mexico DFGoogle Scholar
  3. Bertin P. and Gallais A. (2000). Genetic variation for nitrogen use efficiency in a set of recombinant maize inbred lines. I. Agrophysiological results. Maydica 45: 53–65Google Scholar
  4. Betran F.J., Ribaut J.M., Beck D. and Gonzalez de León D. (2003). Genetic diversity, specific combining ability and heterosis in tropical maize under stress and nonstress environments. Crop Sci. 43: 797–806CrossRefGoogle Scholar
  5. Brichette Mieg I., Moreno-González J. and López A. (2001). Variability of European maize landraces for forage digestibility using near infrared reflectance spectroscopy (NIRS). Maydica 46: 245–252Google Scholar
  6. Centre de Recherche de Montpellier 2001. Eu Gen Res 088. European Union Maize Landraces (EUML) Database [Online]. Available at: Centre de Recherche de Montpellier. Institut National de la Recherche Agronomique (INRA).Google Scholar
  7. Costa C., Dwyer L.M., Stewart D.W. and Smith D.L. (2002). Nitrogen effects on grain yield components of leafy and nonleafy maize genotypes. Crop Sci. 42: 1556–1563CrossRefGoogle Scholar
  8. Derieux M. 1988. Breeding maize for earliness. Importancedevelopmentprospects. In: Maize breeding and maize production. Euromaize 88. Maize Research InstituteZenum PoljeBelgradepp. 35–46.Google Scholar
  9. Fageria N.K., Baligar V.C. and Allan Jones C. (1991). Growth and mineral nutrition of field crops. Marcel Dekker Inc, NYGoogle Scholar
  10. Greef J.M. (1994). Productivity of maize (Zea mays L.) in relation to morphological physiological characteristics under varying amounts of nitrogen supply. J. Agron. Crop Sci. 172: 317–326CrossRefGoogle Scholar
  11. Jones R.J., Schreiber B.M.N. and Roessler J.A. (1996). Kernel sink capacity in maize: genotypic and maternal regulation. Crop Sci. 35: 301–306CrossRefGoogle Scholar
  12. Kempthorne O. (1969). An Introduction to Genetic Statistics. Iowa State University Press, Ames, IowaGoogle Scholar
  13. Knapp S.J., Stroup W.W. and Ross M.W. (1985). Exact confidence intervals for heritability on a progeny mean basis. Crop Sci. 25: 192–194CrossRefGoogle Scholar
  14. Lafitte H.R., Edmeades G.O. and Taba S. (1997). Adaptive strategies identified among tropical maize landraces for nitrogen-limited environments. Field Crops Res. 49(2–3): 187–204CrossRefGoogle Scholar
  15. Lee T.C. 1981. The relationship of nitrogen sink and kernel sink strength on dry matter accumulation in Zea mays L. Ph. D. Dissertation, Purdure University.Google Scholar
  16. Malvar R.A., Butron A., Alvarez A., Ordás B., Soengas P., Revilla P. and Ordas A. (2004). Evaluation of the European Union maize landrace core collection for resistance to Sesamia nonagrioides (Lepidoptera : Noctuidae) and Ostrinia nubilalis (Lepidoptera : Crambidae). J. Econ. Entomol. 97(2): 628–634PubMedCrossRefGoogle Scholar
  17. McCullough D.E., Girardin P., Mihajlovic M., Aguilera A. and Tollenaar M. (1994). Influence of N supply on development and dry matter accumulation of an old and a new maize hybrid. Can. J. Plant Sci. 74: 471–477Google Scholar
  18. Moll R.H., Kamprath E.J. and Jackson W.A. (1982). Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 74: 562–564CrossRefGoogle Scholar
  19. Moll R.H., Kamprath E.J. and Jackson W.A. (1987). Development of nitrogen efficient prolific hybrids of maize. Crop Sci. 27: 181–186CrossRefGoogle Scholar
  20. Pérez Leroux H.A.J. and Long S.P. (1994). Growth analysis of contrasting cultivars of Zea mays L. at different rates of nitrogen supply. Ann. Bot. 73: 507–513CrossRefGoogle Scholar
  21. Petr J. 1991. Influence of weather on nitrogen uptake. In: Weather and yield. Developments in Crop Science. 20. Elsevier Science Publishers Amsterdam & Agricultural Publishing House Brázda, Prague, pp. 81–88.Google Scholar
  22. Presterl T., Seitz G., Schmidt W. and Geiger H.H. (2002a). Improving nitrogen use efficiency in European maize – Comparison between line per se and testcross performance under high and low soil nitrogen. Maydica 47: 83–91Google Scholar
  23. Presterl T., Groh S., Landbeck M., Seitz G., Schmidt W. and Geiger H.H. (2002b). Nitrogen uptake and utilization efficiency of European maize hybrids developed under conditions of low and high nitrogen input. Plant Breed. 121(6): 480–486CrossRefGoogle Scholar
  24. Presterl T., Seitz G., Landbeck M., Thiemt E.M., Schmidt W. and Geiger H.H. (2003). Improving nitrogen-use efficiency in European maize: Estimation of quantitative genetic parameters. Crop Sci. 43: 1259–1265CrossRefGoogle Scholar
  25. Ramos C. 1996. Effect of agricultural practices on the nitrogen losses to the environment. In: Fertilizers and Environment. Kluwer Academic Publishers, The Netherlands, pp. 355–361.Google Scholar
  26. Raun W.R. and Johnson G.V. (1999). Improving nitrogen use efficiency for cereal production. Agron. J. 91: 357–363CrossRefGoogle Scholar
  27. Rebourg C., Gouesnard B. and Charcosset A. (2001). Large scale molecular analysis of traditional European maize populations. Relationships with morphological variation. Heredity 86(5): 574–587CrossRefPubMedGoogle Scholar
  28. Rice C.W., Havlin J.L. and Schepers J.S. (1995). Rational nitrogen fertilization in intensive cropping systems. Fert. Res. 42: 89–97CrossRefGoogle Scholar
  29. Rizzi E., Balconi C., Nembrini L., Stefanini F.M., Coppolino F. and Motto M. (1993). Genetic variation and relationships among N-related traits in maize. Maydica 38: 23–30Google Scholar
  30. Robertson A. (1959). The sampling variance of the genetic correlation coefficient. Biometrics 15: 469–485CrossRefGoogle Scholar
  31. Russell W.A. (1991). Genetic improvement of maize yields. Adv. Agron. 46(1): 245–298CrossRefGoogle Scholar
  32. (1999). SAS User's GuideVersion 8. SAS Inst. Inc, Cary, NcGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • R. Alonso Ferro
    • 1
  • I. Brichette
    • 1
  • G. Evgenidis
    • 2
  • Ch. Karamaligkas
    • 3
  • J. Moreno-González
    • 1
  1. 1.Centro de Investigacións Agrarias de Mabegondo (CIAM), Xunta de GaliciaA CoruñaSpain
  2. 2.N.AG.RE.F. – Cereal InstituteThessalonikiGreece
  3. 3.N.AG.RE.F. – Station of Agricultural Research PalamasPalamas KarditsaGreece

Personalised recommendations