Genetic Resources and Crop Evolution

, Volume 54, Issue 1, pp 27–44 | Cite as

Diversity in White Lupin (Lupinus albus L.) Landraces from Northwest Iberianplateau

  • Fernando González-Andrés
  • Pedro A. Casquero
  • Cristina San-Pedro
  • Elías Hernández-Sánchez


All the accessions (35) of white lupin (Lupinus albus L.) landraces collected from northwest Iberian plateau and maintained at the Spanish germplasm collection (CRF of INIA), were studied with the general objective of assessing the biodiversity of these landraces and to ascertain their value as genetic resources for the development of germplasm adapted to the areas where they were collected with long and chilly winters. The characterization study comprised 51 qualitative and 50 quantitative characters. Quantitative parameters were analyzed by Principal Components Analysis (PCA). The 2-dimensional plot (49.3% of cumulative variability) formed a main group of accessions and 4 outliers (#1, #9, #27 and #28) separated in the first PC. The characters with a higher contribution to the first PC were inflorescence length, leaf petiole length and leaf central foliole area. The presence of alkaloids, the percentage of plants killed by soil borne fungal diseases, the phenology, the yield per plant and yield components were also assessed. Twenty six accessions (the main group in the PCA plot) showed high homogeneity, with the following highlights: bitterness, indeterminate growth habit, early ripeness and spring sowing with the exception of #18, in which seeding date is unknown and it had a later phenology. By contrast accessions #9 and #27 were bitter of autumn sowing with determinate growing habit and they had the longest values of primary inflorescence length and a later phenology when they were sown in spring. Average values for yield and yield components showed a broad range of variation between accessions. The main yield component was the number of pods per plant. Accession #22 had the highest mean seed mass, although this had not significant influence in yield. Accession #17 showed the highest yield and #1 the lowest. This last also had the lowest values of inflorescence length, leaf petiole length and leaf central foliole area. No significant differences of resistance to soil-borne fungi were found between accessions. The year had a significant effect in the phenology, yield and yield components except for number of seeds per pod. The studied material might be of interest for the development of spring sowing germplasm adapted to north Iberian peninsula.


Germplasm characterization Landraces Lupinus albus Principal components analysis White lupin Yield components 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buirchell B.J. and Cowling W.A. (1998). Genetic resources in lupins. In: Gladstones, J.S., Atkins, C.A. and Hamblin, J. (eds) Lupins as Crop Plants: Biology, Production and Utilization, pp 41–66. CAB International, WallingfordGoogle Scholar
  2. 2.
    Christiansen J.L., Raza S. and Ortiz R. (1999). White lupin (Lupinus albus L.) germplasm collection and preliminary in situ diversity assessment in Egypt. Genet. Resour. Crop Evol. 46: 169–174CrossRefGoogle Scholar
  3. 3.
    Christiansen J.L., Raza S., Jornsgard B., Mahmoud S.A. and Ortiz R. (2000). Potential of landrace germplasm for genetic enhancement of white lupin in Egypt. Genet. Resour. Crop Evol. 47: 425–430CrossRefGoogle Scholar
  4. 4.
    Cowling W.A., Buirchell B.J. and Tapia M.E. (1998). Lupin. Lupinus L. Promoting the conservation and use of underutilized and neglected crops. 23. Institute of Plant Genetic and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome,ItalyGoogle Scholar
  5. 5.
    Cubero J.I. and López-Bellido L. (1986). The potential of lupins in agriculture of the Mediterranean basin. In: Lawson, E. (eds) Proceedings of the 4th International Lupin Conference, pp 129–137. Geraldton, AustraliaGoogle Scholar
  6. 6.
    Duranti M. and Gius C. (1997). Legume seeds: protein content and nutritional value. Field Crop Res. 53: 31–46CrossRefGoogle Scholar
  7. 7.
    Faluyi M.A., Zhou X.M., Zhang F., Leibovitch S., Minger P. and Smith D.L. (2000). Seed quality of sweet white lupin (Lupinus albus) and management practice in eastern Canada. Eur. J. Agron. 13: 27–37CrossRefGoogle Scholar
  8. 8.
    Fuentes M. and Lopez-Bellido L. (1986). Lawson, E. (eds) Proceedings of the 4th International Lupin Conference, pp 315–323. Geraldton, AustraliaGoogle Scholar
  9. 9.
    Gilbert J.E., Lewis R.V., Wilkinson M.J. and Caligari P.D.S. (1999). Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor. Appl. Genet. 98: 1125–1131CrossRefGoogle Scholar
  10. 10.
    Gladstones J.S. (1970). Lupins as crop plants. Field Crop Abst. 23: 123–148Google Scholar
  11. 11.
    Gladstones J.S. (1998). Distribution, origin, taxonomy, history and importance. In: Gladstones, J.S., Atkins, C.A. and Hamblin, J. (eds) Lupins as crop plants: biology, production and utilization, pp 1–40. CAB International, WallingfordGoogle Scholar
  12. 12.
    González-Andrés F. and Ortiz J.M. (1996). Morphometrical characterization of Cytisusallies (Genisteae: Leguminosae), as an aid for taxonomic discrimination. Israel J. Plant Sci. 44: 95–114 Google Scholar
  13. 13.
    Gross R. (1988). Lupin in human nutrition. Proceedings of the 5th International Lupin Conference. Poznań, Poland, 51–63.Google Scholar
  14. 14.
    Herbert S.J. (1977). Growth and grain yield of Lupinus albus at different plant populations. New Zeal. J. Agric. Res. 20: 459–465Google Scholar
  15. 15.
    Hill G.D. (1986). Recent developments in the use of lupins in animal and human nutrition. In: Lawson, E. (eds) Proceedings of the 4th International Lupin Conference, pp 40–63. Geraldton, AustraliaGoogle Scholar
  16. 16.
    Hondelmann W. (1984). The lupin - ancient and modern crop plant. Theor. Appl. Genet. 68: 1–8CrossRefGoogle Scholar
  17. 17.
    Huyghe C. (1997). White lupin (Lupinus albus L.). Field Crop Res. 53: 147–160CrossRefGoogle Scholar
  18. 18.
    IPGRI (1981). Descriptors for Lupins. International Plant Genetic Resources Institute, Rome, ItalyGoogle Scholar
  19. 19.
    Jambrina Alonso J.L. (1995). Mejora del Lupinus albus en la región castellano-leonesa. Agricultura 64: 573–580Google Scholar
  20. 20.
    Jambrina J.L. (1996). El altramuz. In: Franco Jubete, F. and Ramos Monreal, A. (eds) El cultivo de las leguminosas de grano en Castilla y León, pp 25–75. Junta de Castilla y León, ValladolidGoogle Scholar
  21. 21.
    Julier B. and Huyghe C. 1992. Heredity of determinate growth in winter white lupin (Lupinus albus L.). Influence of the sowing time on architecture. In: Association Europe´ enne des Prote´ agineux (ed.), Proc. 1st Eur. Conf. on Grain Legumes. Angers, France, pp. 47–48.Google Scholar
  22. 22.
    Keeve R., Loubser H.L. and Krüger G.H.J. (2000). Effects of temperature and photoperiod on days to flowering, yield and yield components of Lupinus albus (L.) under field conditions. J. Agron. Crop Sci. 184: 187–196CrossRefGoogle Scholar
  23. 23.
    Lacassagne L. (1984). Valeur nutritive du pupin blanc doux en alimentacion animale. Proceedings of the 3eme Congres International du lupin. La Rochelle, France, 422–452.Google Scholar
  24. 24.
    López-Bellido L., Fuentes M. and Castillo J.E. (2000). Growth and yield of white lupin under Mediterranean condition: Effect of plant density. Agron. J. 92: 200–205CrossRefGoogle Scholar
  25. 25.
    MAPA 2002. Anuario de estadística agroalimentaria. Scholar
  26. 26.
    Mikolajczyk J., Stawinski S. and Wiza M. 1984. Dircctions actuelles de l'amélioration et l'état actuel des recherches sur l'acclimatation du lupin blanc en Pologne. La RochelleFrancepp. 570–571. In: International Lupin Association (ed.), Proceedings of the 3rd International Lupin Conference.Google Scholar
  27. 27.
    Mülayim M., Tamkoç A. and Babaoglu M. (2002). Sweet white lupins versus local bitter genotype: agronomic characteristics as affected by different planting densities in the Göller region of Turkey. Eur. J. Agron. 17: 181–189CrossRefGoogle Scholar
  28. 28.
    Noffsinger S.L., Huyghe C. and van Santen E. (2000). Analysis of grain-yield components and inflorescence levels in winter-type white lupin. Agron. J. 92: 1195–1202CrossRefGoogle Scholar
  29. 29.
    Paz Rodríguez J.L., López Cederón F.X., Ruíz Nogueira B. and Sau F. (2001). Efecto de la fecha de siembra en Altramuz blanco y guisante proteaginoso. Agricultura 824: 110–112Google Scholar
  30. 30.
    Petterson D.S. (1998). Composition and food uses of lupins. In: Gladstones, J.S., Atkins, C.A. and Hamblin, J. (eds) Lupins as crop plants: biology, production and utilization, pp 353–384. CAB International, WallingfordGoogle Scholar
  31. 31.
    Plucknett D.L., Smith N.J.H., Williams J.T. and Murthi-Anishetty N. (1987). Gene Banks and the World's Food. Princeton University Press, New JerseyGoogle Scholar
  32. 32.
    Rahman M.S. and Gladstones A. (1972). Control of flower initiation by vernalization and photoperiod and temperature under controlled environment. Aust. J. Exp. Agr. Anim. Hus. 12: 638–645CrossRefGoogle Scholar
  33. 33.
    Reeves T.G., Boundy K.A. and Brooke H.D. (1977). Phenological development studies with Lupinus angustifolius and L. albus Victoria. Aust. J. Exp. Agric. Anim. Hus. 14: 205–213Google Scholar
  34. 34.
    Rohlf F.J. (2000).NTSYS-pc: numerical Taxonomy and Multivariate Analysis System Version 2.1. Exeter Software, New York Google Scholar
  35. 35.
    Sator C. (1990). Lupins (Lupinus spp.). In: Bajaj, Y.P.S. (eds) Agriculture and Forestry Legumes and Oilseed Crops I, Vol. 10, pp 288–311. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  36. 36.
    Sneath P.H.A. and Sokal R.R. (1973). Numerical taxonomy. The principles and practice of numerical classification. Freeman, San FranciscoGoogle Scholar
  37. 37.
    Talhinhas P., Neves-Martins J. and Leitao J. (2003). AFLP, ISSR and RAPD markers reveal high levels of genetic diversity among Lupinus spp.. Plant Breed 122: 507–510CrossRefGoogle Scholar
  38. 38.
    UTHSCSA (University of Texas Health Science CenterSan Antonio) (2000). Image Tool IT Version 2.0. University of Texas, San Antonio, Texas. Scholar
  39. 39.
    Van der Mey J.A.M., McDonald G.A. and van der Mey D. 1991. The effect of vernalization on flowering, dry matter and macro element content of Lupinus albus cultivars. In: von Baer D.(ed.), Proceedings of the 6th International Lupin Conference. Asociación Chilena del LupinoTemuco-Pucon, Chilepp. 295–298. November 25–30, 1990Google Scholar
  40. 40.
    Vaz A.C., Pinheiro C., Martins J.M.N. and Ricardo C.P.P. (2004). Cultivar discrimination of Portuguese Lupinus albus by seed protein electrophoresis: the importance of considering “glutelins” and glycoproteins. Field Crop Res. 87: 23–34CrossRefGoogle Scholar
  41. 41.
    Yang H., Sweetingham M.W., Cowling W.A. and Smith P.M.C. (2001). DNA fingerprinting based on microsatellite-anchored fragment length polymorphisms, and isolation of sequence-specific PCR markers in lupin (Lupinus angustifolius L.). Mol. Breeding 7: 203–209CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Fernando González-Andrés
    • 1
  • Pedro A. Casquero
    • 1
  • Cristina San-Pedro
    • 1
  • Elías Hernández-Sánchez
    • 2
  1. 1.Departamento de Ingeniería Agraria, ESTIAUniversidad de LeónEspañaLeón
  2. 2.Departamento de FitotecniaUniversdad Autónoma ChapingoTexcocoMexico

Personalised recommendations