Advertisement

Genetic Resources and Crop Evolution

, Volume 53, Issue 6, pp 1165–1172 | Cite as

Introgression from Durum Wheat Landraces in Wild Emmer Wheat (Triticum Dicoccoides (Körn. ex Asch. et Graebner) Schweinf)

  • M Syouf
  • B E Abu-Irmaileh
  • J Valkoun
  • S Bdour
Article

Abstract

Introgression was detected within wild emmer wheat population in Jordan during the year 2000. Wild emmer wheat was found to occur in non-disturbed habitat, very close to cultivated durum wheat in northern parts of Jordan, and it was found in cultivated durum wheat in southern parts of Jordan. Random Amplified Polymorphic DNA (RAPD) test was constructed to assess natural introgression occurrence within wild emmer wheat population. Associated durum wheat land races from the vicinity of durum wheat fields were also collected. Shannon Diversity Index for wild emmer wheat populations was 0.46 and for durum wheat landraces was 0.45. The percentage of polymorphic loci for wild emmer wheat populations was 92.6. The close genetic distance between certain wild emmer wheat populations and durum wheat landraces provided proofs that massive introgression has occurred.

Key words

Durum wheat landraces Introgression RAPD Shannon diversity Index Wild emmer wheat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.L. Arnold, C.M. Buckner and J.J. Robinson, Pollenmediated introgression and hybrid speciation in Louisiana Irises. Proc. Natl. Acad. Sci. USA. 88 (1991) 1398-1402PubMedCrossRefGoogle Scholar
  2. Blumler M.A. 1998. Introgression of durum into wild emmer and the agricultural origin question. In: Damania A.B., Valkoun J., Willcox G. and Quaiset C.O. (eds), The Origin of Ariculture and Crop Domestication. The Harlan symposium 10-14 May, 1997. ICARDA , IPGRI FAO , AND GRCP , Allepo, Syria.Google Scholar
  3. K.G. Briggs, O.K. Kiplagat and A.M. Johnson-Flanagan, Floret sterility and out crossing in two spring wheat cultivars. Can. J. Plant Sci 79 (1999) 321-328Google Scholar
  4. Damania A.B. 1998. Diversity of major cultivated plants domesticated in the Near East. In: Damania A.B., Valkoun J., Iillcox D. and Qualset C.O. (eds), The Origin of Agricultural and Crop Domestication. The Harlan Symposium, 10-14 May, 1997, pp. 51-64.Google Scholar
  5. Darmency H. and Vigouroux Y. 2000. Gene flow from cultivated crops to weedy relatives. Third International Weed Science Congress, 6-11 June 2000,. Brazil, pp. 168.Google Scholar
  6. J.M.J. De-Wet and J.R. Harlan, Weeds and domesticates: evolution in the man made habitat. Econ. Bot 29 (1975) 99-107Google Scholar
  7. Dorofeev 1979. Wheat Taxonomy. http://www. Ksu. edu/ wgrc/ taxonomy/ taxdor.html.Google Scholar
  8. T.A. Felsenburg, A. Levey, G. Galili and M. Feldman, Polymorphism of high molecular weight glutenines in wild tetraploid wheat: spatial and temporal variation in a native site. Isr. J. Bot 40 (1991) 501-508Google Scholar
  9. M.E. Ferguson, L.D. Robertson, B.V. Ford-Lloyed, H.J. Newbury and N. Maxt, Contrasting genetic variation among lentil landraces from different geographical origins. Euphytica 102 (1998) 265-273CrossRefGoogle Scholar
  10. J.R. Harlan, Crops and Man. Madison, Wisconsin, USA: American Society of Agronomy, Inc. (1992).Google Scholar
  11. J.R. Harlan, J.M. De-wet and E.G. Price, Comparative evolution of cereals. Evolution 27 (1973) 311-325CrossRefGoogle Scholar
  12. M.J. Iqbal and A.L. Rayburn, Identification of the 1Rsrye chromosomal segment in wheat by RAPD analysis. Theor. Appl. Genet 91 (1995) 1048-1053CrossRefGoogle Scholar
  13. D.I. Jarvis and T. Hodgkin, Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agro-ecosystems. Mol. Ecol 8 (1999) S159-S173CrossRefGoogle Scholar
  14. T. Johns and A. Keen, Ongoing evolution of potato on the Altiplano of western Bolivia. Econ. Bot 40 (1986) 409-424Google Scholar
  15. G. Kimber and M. Feldman, Wild wheat, an Introduction. Special report 353. Columbia: College of Agriculture, University of Missouri (1987).Google Scholar
  16. G. Ladizinsky, Collection of wild cereal in upper Jordan valley. Econ. Bot 29 (1978) 264-267Google Scholar
  17. Mele A.J. 2004. Community analysis: species diversity idices.http://wwww.users.nac. Net/jmele/ECO.sdi.html.Google Scholar
  18. N.G. Moseman, Enhanced leaf rust resistant barley and wheat germplasm from Hordeum spontaneum and Triticum dicoccoides. Grignon, France: European and Mediterranean Cereal Rusts Conference (1984).Google Scholar
  19. M. Nei, Genetic distance between populations. Am. Nat 106 (1972) 283-292CrossRefGoogle Scholar
  20. E.D. Owuor, T. Fahima, A. Beharav, A. Korol and E. Nevo, RAPD divergence caused by microsite edaphic selection in wild barley. Genetica 105 (1999) 177-192PubMedCrossRefGoogle Scholar
  21. Promega, Wizard Genomic DNA Purification Kit. USA: Technical Manual (1999).Google Scholar
  22. F.J Rohlf, Numerical Taxonomy and Multivariate Analysis System NTSYS Pc. Version 18.. NewYork: Exeter Software (1993).Google Scholar
  23. G. Schachermayr, H. Siedler, M. Gale, D. Winzeler, H. Winzeler and M. Bkeller, Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. Theor. Appl. Genet. 88 (1994) 110-115CrossRefGoogle Scholar
  24. Snow A., Rieseberg Alxander L.H., Cummings C. and Culley T.2000. Introgression from cultivated to wild sunflower (Helianthus annuus). Third International Weed Science Congress. Gene Flow Symposium. Foz do Iguassu, Brazil.Google Scholar
  25. A.F. Stelmakh and V.I. Avsenin, Alien introgression of spring habit dominant genes into bread wheat. Euphytica 89 (1996) 65-68CrossRefGoogle Scholar
  26. O.Z. Sun, Z. Liu, J. Gao and T. Hung, Genetic relationships and diversity among Tibetan wheat, common wheat and European spelt wheat by RAPD markers. Euphytica 99 (1998) 205-211CrossRefGoogle Scholar
  27. Syouf M. 2001. Aspect of Ecological Characterization and Introgression from Wheat - Landraces in Triticum dicoccoides, Ph.D. thesis. Faculty of Graduate Studies, University of Jordan.Google Scholar
  28. Syouf M., Valkoun J.and Humeid B. 1995. Survey and collection of cereal wild progenitors in Jordan. 1995. ICARDA genetic resources unit. Annual report 22, 23. ICARDA, Syria.Google Scholar
  29. Tzion F., Sun G., Chague V., Korol A., Grama A., Ronin Y. and Nevo E. 1997. Identification of molecular markers linked to the Yr15 Stipe rust resistance gene of wheat introgressed from wild emmer wheat T. dicoccoides. Plant and Animal genome V. Conference. http: //www. Intl-pag. Org./pag/5 abstracts/p.5c-163-html.Google Scholar
  30. Valkoun J. 2001. Wheat pre-breeding using wild progenitors in wheat in a global environment. Proceeding of the 6th International wheat Conference, L. Bedo and L. Lang ed. 5-9 June 2000. Budapest, Hungary, p. 699-707.Google Scholar
  31. G.V. Wang, S. Hyne, Y. Chao, J. Henry, M.D. Buyser and J.W.Snap Gale, A comparison of male and female recombination frequency in wheat using RFLP maps of homologus group 6 and 7 chromosme. Theor. Appl. Genet. 91 (1995) 49-746Google Scholar
  32. J.G. Williams, A.R. Kubelik, K.J Livak, J.A. Rafalski and S.V. Tingey, DNA polymorphism amplified arbitrary Primers are useful as genetic markers. Nucleic Acid Res. 18 (1990) 6531-6535PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • M Syouf
    • 1
  • B E Abu-Irmaileh
    • 2
  • J Valkoun
    • 3
  • S Bdour
    • 4
  1. 1.Ministry of AgricultureNational Center for Agricultural Research and Technology Transfer (NCARTT)BaqaJordan
  2. 2.Department of Plant Protection, Faculty of AgricultureUniversity of JordanJordanJordan
  3. 3.Plant Genetic Resources UnitICARDAAleppoSyria
  4. 4.Department of Biological ScienceUniversity of JordanJordanJordan

Personalised recommendations