Advertisement

Genetic Resources and Crop Evolution

, Volume 53, Issue 5, pp 1013–1019 | Cite as

Quantitative Trait Loci for Seed Dormancy in Wild Barley (Hordeum spontaneum C. Koch)

  • Tytti K. Vanhala
  • Piet Stam
Article

Abstract

A quantitative trait locus analysis was carried out to unravel the genetic basis of dormancy in wild barley (Hordeum spontaneum) from Israel. Two accessions, Ashkelon and Mehola, from divergent environments were crossed to produce a mapping population. A linkage map was produced from the F2 population, and F4 seeds were used for germination experiments. Five quantitative trait loci (QTL) were detected for dormancy across the different germination experiments. These QTL were found on chromosomes 1, 2, 5, 6 and 7. The variation explained by each QTL varied between 8 and 25%. Ashkelon alleles increased the germination except for the QTL on chromosome 5. Three out of these five QTL co-locate with QTL found earlier in cultivated barley crosses, although this does not necessarily imply that they would be the same loci. The level of dormancy is much higher in wild barley than in cultivated barley and wild barley may have alleles that have not yet been utilised in breeding for optimally dormant barley.

Key words

Dormancy Germination Hordeum spontaneum QTL Wild barley 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bewley J.D. and Black M. 1994. Seeds: Physiology of Development and Germination. Plenum Press.Google Scholar
  2. Fennimore, S.A., Nyquist, W.E., Shaner, G.E., Myers, S.P., Foley, M.E. 1998Temperature response in wild oat (Avena fatua L.) generations segregating for seed dormancyHeredity81674682CrossRefGoogle Scholar
  3. Foley, M.E., Fennimore, S.A. 1998Genetic basis for seed dormancySeed Sci. Res.8173182CrossRefGoogle Scholar
  4. Gutterman, Y., Corbineau, F., Come, D. 1996Dormancy of Hordeum spontaneum caryopses from a population on the Negev Desert HighlandsJ. Arid. Environ.33337345CrossRefGoogle Scholar
  5. Gutterman, Y., Nevo, E. 1994Temperatures and ecological genetic differentiation affecting the germination of Hordeum spontaneum caryopses harvested from 3 populations – the Negev Desert and opposing slopes on Mediterranean Mount CarmelIsrael J. Plant Sci.42183195Google Scholar
  6. Han, F., Ullrich, S.E., Clancy, J.A., Jitkov, V., Kilian, A., Romagosa, I. 1996Verification of barley seed dormancy loci via linked molecular markersTheor. Appl. Genet.928791CrossRefGoogle Scholar
  7. Oberthur L., Dyer W., Ullrich S.E. and Blake T.K. 1995. Genetic analysis of seed dormancy in barley (Hordeum vulgare L.). J. Quant. Trait Loci. available at http://www.cabi- publishing.org/gateways/jag/papers95/paper595/dormancy. html.Google Scholar
  8. Ogawara, K., Hayashi, J. 1964Dormancy studies in Hordeum spontaneum seedsBerichte des Ohara Instituts für landwirtschaftliche BiologieOkayama Universita¨t12159188Google Scholar
  9. Poorter H., van Rijn C.P.E., Vanhala T.K., Verhoeven K.J.F., de Jong Y.E.M., Stam P. and Lambers H. 2004. A genetic analysis of relative growth rate and underlying components in Hordeum spontaneum. Oecologia in press. Article available at Online First, 20 November 2004, DOI: 10.1007/s00442-004-1705-1.Google Scholar
  10. Qi, X.Q., Stam, P., Lindhout, P. 1996Comparison and integration of four barley genetic mapsGenome39379394PubMedGoogle Scholar
  11. Rodriguez, M.V., Margineda, M., Gonzalez-Martin, J.F., Insausti, P., Benech-Arnold, R.L. 2001Predicting preharvest sprouting susceptibility in barley: a model based on temperature during grain fillingAgron. J.9310711079CrossRefGoogle Scholar
  12. Schuurink, R.C., Van Beckum, J.M.M., Heidekamp, F. 1992Modulation of grain dormancy in barley by variation of plant-growth conditionsHereditas117137143Google Scholar
  13. Stacy, R.A.P., Munthe, E., Steinum, T., Sharma, B., Aalen, R.B. 1996A peroxiredoxin antioxidant is encoded by a dormancy-related genePer1, expressed during late development in the aleurone and embryo of barley grainsPlant Mol. Biol.3112051216PubMedCrossRefGoogle Scholar
  14. Thomas, W.T.B., Powell, W., Swanston, J.S., Ellis, R.P., Chalmers, K.J., Barua, U.M., Jack, P., Lea, V., Forster, B.P., Waugh, R., Smith, D.B. 1996Quantitative trait loci for germination and malting quality characters in a spring barley crossCrop Sci.36265273CrossRefGoogle Scholar
  15. Ullrich, S.E., Hayes, P.M., Dyer, W.E., Blake, T.K., Clancy, J.A. 1992Quantitative trait locus analysis of seed dormancy in ‘Steptoe’ barleyWalker-Simmons, M.K.Ried, J.L. eds. Preharvest Sprouting in Cereals 1992American Association of Cereal ChemistrySt Paul, MN136145Google Scholar
  16. Vanhala, T.K., Rijn, C.P.E., Buntjer, J., Stam, P., Nevo, E., Poorter, H., Eeuwijk, F.A. 2004Environmental, phenotypic and genetic variation of wild barley (Hordeum spontaneum) from IsraelEuphytica137297309CrossRefGoogle Scholar
  17. Van Ooijen J.W. and Maliepaard C. 1996. MapQTLTM version 4.0: Software for the calculation of QTL positions on genetic maps. CPRO-DLO, Wageningen, http://www.kyazma.nl.Google Scholar
  18. Ooijen, J.W. 1999LOD significance thresholds for QTL analysis in experimental populations of diploid speciesHeredity83613624PubMedCrossRefGoogle Scholar
  19. Verhoeven, K. 2003A genetic analysis of selection and adaptation in wild barleyPonsen and Looijen B.VWageningenDissertationGoogle Scholar
  20. Wang, M. 1997The role of abscisic acid in the regulation of barley grain germinationSeed Sci. Technol.256774Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Laboratory of Plant BreedingWageningen UniversityWageningenThe Netherlands
  2. 2.Institute of Cell, Animal and Population Biology, Ashworth LaboratoriesUniversity of EdinburghEdinburghUK

Personalised recommendations