Advertisement

Genetic Resources and Crop Evolution

, Volume 53, Issue 5, pp 901–906 | Cite as

Genetic Diversity among Syrian Cultivated and Landraces Wheat Revealed by AFLP Markers

  • A. Shoaib
  • M. I. E. Arabi
Article

Abstract

Genetic diversity among some important Syrian wheat cultivars was estimated using Amplified Fragment Length Polymorphism (AFLP) markers. Five Triticum aestivum L. and 10 Triticum turgidum ssp. durum were analyzed with 11 EcoRI–MseI primer pair combinations. Of the approximately 525 detected AFLP markers, only 46.67% were polymorphic. Cluster analysis with the entire AFLP data divided all cultivars into two major groups reflecting their origins. The first one contained T. aestivum L. cultivars, and the T. turgidum ssp. durum cultivars and landraces were grouped in the second. Narrow genetic diversity among all cultivars was detected with an average genetic similarity of 0.884. The lowest similarity index (0.9) was found between Cham5 and Hamary (durum wheat), whereas this value was 0.93 between Salamony and Bouhouth 4 (T. aestivum L.). The narrow genetic diversity level indicates that these genotypes could be originated from the same source. AFLP analysis provides crucial information for studying genetic variation among wheat cultivars and provides important information for plant improvement.

Keywords

Amplified Fragment Length Polymorphism (AFLP) Genetic diversity Wheat (Triticum aestivum L. Triticum turgidum ssp. durum (Desf.) Husn.) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ann. Agri. Stat. Abst.1998Areaproduction and yield of wheatMinistry of Agriculture and Agrarian ReformDamascus, Syria300Google Scholar
  2. Asins, M.J., Carbonell, E.A. 1989Distribution of genetic variability in durum wheat world collectionTheor. Appl. Genet.77287294CrossRefGoogle Scholar
  3. Autrique, E., Nachit, M.M., Monneveux, P., Tanksley, S.D., Sorrells, M.E. 1996Genetic diversity in durum wheat based on RFLPs, morphophysiological traits and coefficient of parentageCrop Sci.36735742CrossRefGoogle Scholar
  4. Barrett, B.A., Kidwell, K.K. 1998AFLP-based genetic diversity assessment among wheat cultivars from the Pacific NorthwestCrop Sci.3812611271CrossRefGoogle Scholar
  5. Barrett, B.A., Kidwell, K.K., Fox, P.N. 1998Comparison of AFLP and pedigree-based genetic diversity assessment methods using wheat cultivars from the Pacific NorthwestCrop Sci.3812711278CrossRefGoogle Scholar
  6. Branlard, G., Autran, J.C., Monneveux, P. 1989High molecular weight gluten subunit in durum wheat (T. durum)Theor. Appl. Genet.78353358CrossRefGoogle Scholar
  7. Burkhamer, R.L., Lanning, S.P., Martens, R.J., Martin, J.M., Talbert, L.E. 1998Predicting progeny variance from parental divergence in hard red spring wheatCrop Sci.38243248CrossRefGoogle Scholar
  8. Chao, S., Sharp, P.J., Worland, A.J., Warham, E.J., Koebner, R.M.D., Gale, M.D. 1989RFLP-based genetic linkage maps of wheat homoeologous group 7 chromosomeTheor. Appl. Genet.78495504CrossRefGoogle Scholar
  9. Devos, K.M., Gale, M.D. 1992The use of random amplified DNA markers in wheatTheor. Appl. Genet.84567572CrossRefGoogle Scholar
  10. Doyle, J.J., Doyle, J.L. 1987A rapid DNA isolation procedure for small quantities of fresh leaf tissuePhytochem. Bull.191115Google Scholar
  11. Fahima, T., Sun, G.L., Beharav, A., Krugman, T., Beiles, A., Nevo, E. 1999RAPD Polymorphism of wild emmer wheat populations, Triticum dicoccoides Theor. Appl. Genet.98434447CrossRefGoogle Scholar
  12. Flavell, R.B., Smith, D.B. 1976Nucleotide sequence organization in wheat genomeHeredity37231252Google Scholar
  13. Metakovsky, E.V., Kudravtsev, A.M., Iakobashvili, Z.A., Novoselskaya, A-Yu. 1989Analysis of phylogenetic relations of durumcarthlicum and common wheat by means of comparison of alleles of gliadin coding lociTheor. Appl. Genet.77881887CrossRefGoogle Scholar
  14. Nei, M., Li, W.H. 1979Mathematical model for studying genetic variations in term of restriction endonucleasesProc. Natl. Acad. Sci. USA7652695273PubMedCrossRefGoogle Scholar
  15. Paull, J.G., Chalmers, K.J., Karakousis, , Kretschmer, J.M., Manning, S., Langridge, P. 1998Genetic diversity in Australian wheat varieties and breeding materials based on RFLP dataTheor. Appl. Genet.96435446CrossRefGoogle Scholar
  16. Qiang, Z., Lapitan, N.L.V. 1998A comparison of amplified and restriction fragment length polymorphism in wheatCer. Res. Commun.26713Google Scholar
  17. Ranjekar, P.K., Pallotta, D., Lafontaine, J.G. 1976Analysis of the genome of plants. II. Characterization of repetitive DNA in barley (Hordeum vulgare) and wheat (Triticum aestivum)Biochim. Biophys. Acta4253040PubMedGoogle Scholar
  18. Soleimani, V.D., Baum, B.R., Johnson, D.A. 2002AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.]Theor. Appl. Genet.104350357PubMedCrossRefGoogle Scholar
  19. Srivastava, A., Gupta, V., Pental, D., Pradhan, A.K. 2001AFLP-based genetic diversity assessment among agronomicaly important natural and some newly synthesized lines of Brassica juncea Theor. Appl. Genet.102193199CrossRefGoogle Scholar
  20. Tinker, N.A., Fortin, M.G., Mather, D.E. 1993Random Amplified Polymorphic DNA and pedigree relationships in spring barleyTheor. Appl. Genet.85976984CrossRefGoogle Scholar
  21. Peer, Y., Wachter, R. 1993TREECON a software package for the constraction and drawing treesComput. Appl. Biosci.9177182PubMedGoogle Scholar
  22. Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, T., Hornes, M., Fritjers, A., Pot, J., Peleman, J., Kuiper, M., Zabeau, M. 1995AFLP: a new technique for DNA fingerprintNucleic Acid Res.2344074414PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of BiotechnologyAtomic Energy Commission of SyriaDamascusSyria

Personalised recommendations