Genetic Resources and Crop Evolution

, Volume 53, Issue 1, pp 77–90 | Cite as

Phenotypic and Molecular (RAPD) Differentiation of Four Infraspecific Groups of Cultivated Flax (Linum usitatissimum L. subsp. usitatissimum)



Based on agro-botanical characterization data, 3101 accessions of cultivated flax (Linum usitatissimum L. subsp. usitatissimum) from the flax collection held by Plant Gene Resources of Canada (PGRC) were grouped into four infraspecific groups according to the classification proposed by Kulpa and Danert (1962) . The objective of this study was to investigate phenotypic and RAPD variation within and among the four groups to better understand phenotypic and genotypic differentiation within the genepool of cultivated flax. The results of the phenotypic characterization of characters defining the convarieties (capsule dehiscence, plant height, technical stem length and 1000 seed weight) and of other quantitative (petal width, oil content in seeds) and qualitative (RAPD, petal colour, anther colour, petal longitudinal folding and margin folding, ciliation of capsule septa, seed colour) are presented using descriptive statistics. The most frequent convariety in the PGRC genebank was intermediate flax (convar. usitatissimum; 80.7 %), followed by fibre flax (convar. elongatum Vav. et Ell. in Wulff; 13.4%), large-seeded flax (convar. mediterraneum [Vav. ex Ell.] Kulpa et Danert; 5.6%) and dehiscent flax (convar. crepitans [Boenningh.] Kulpa et Danert; 0.3%). Analyses of RAPD data and two qualitative characters (longitudinal and marginal folding of petals) did not show marked differences among the proposed convarieties. However, differences among the convarieties in quantitative traits defining them (plant height, technical stem length and seed size) were considerable. Patterns of variation among the convarieties for other quantitative characters (petal width and seed oil content), as well as the frequencies of character expressions of four qualitative characters (petal colour, anther colour, ciliation of capsule septa and seed colour) were significantly associated with the four proposed convarieties, underlining the phenotypic and genotypic validity of this grouping. The patterns of geographic distribution of the convarieties and important characters showed that certain convarieties dominate in some areas of origin. The infraspecific classification and the presented characterization data increase the transparency of genetic diversity available in cultivated flax and in particular in the PGRC flax collection.


Characterization Dehiscent flax Fibre flax Genebank Infraspecific classification Linseed Linum usitatissimum Phenotypic variation RAPD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apostol, B.L., Black, W.C.,IV, Miller, B.R., Reiter, P., Beaty, B.J. 1993Estimation of the number of full sibling families at an oviposition site using RAPD-PCR markers: applications to the mosquito Aedes aegyptiTheor. Appl. Genet.869911000CrossRefGoogle Scholar
  2. Diederichsen, A. 2001Comparison of genetic diversity of flax (Linum usitatissimum L.) between Canadian cultivars and a world collectionPlant Breeding120360362CrossRefGoogle Scholar
  3. Diederichsen, A. 2004Case studies for the use of infraspecific classifications in managing germplasm collections of cultivated plantsActa Horticult.634127139Google Scholar
  4. Diederichsen, A., Hammer, K. 1995Variation of cultivated flax (Linum usitatissimum L. subsp. usitatissimum) and its wild progentitor pale flax (subsp. angustifolium [Huds.] Thell.)Genet. Resour. Crop Evol.42263272Google Scholar
  5. Diederichsen, A., Richards, K.W. 2003Cultivated flax and the genus Linum L. – Taxonomy and germplasm conservationMuir, A.Westscott, N. eds. Flax, the Genus LinumTaylor & FrancisLondon, UK2254Google Scholar
  6. Dillman, A.C. 1953Classification of Flax Varieties, 1946USDAWashington, DCTechnical Bulletin No. 1054Google Scholar
  7. Elladi, V.N. 1940Linum usitatissimum (L.) Vav. consp. nov. – Len’. [Flax]Vul’f, E.V.Vavilov, N.I. eds. Kul’turnaja Flora SSSR, Prjadil’nyeSel’chozgizMoskvaLeningrad109207[Flora of Cultivated Plants of the USSR, Fibre Plants], Vol. 5, Part 1Google Scholar
  8. Firestone, D. eds. 1998American Oil Chemists Recommended Practice Ak-3–94. Oil Content of Oilseeds by Nuclear Magnetic ResonanceAOCS, ChampaignIL, USAOfficial Methods and Recommended Practices of the AOCS, 5th ed. Google Scholar
  9. Fu, Y.B., Diederichsen, A., Richards, K.W., Peterson, G. 2002Genetic diversity within a range of cultivars and landraces of flax (Linum usitatissimum L.) as revealed by RAPDsGenet. Resour. Crop Evol.49167174Google Scholar
  10. Fu, Y.B., Rowland, G.G., Duguid, S.D., Richards, K.W. 2003RAPD analysis of 54 North American flax cultivarsCrop Sci.4315101515Google Scholar
  11. Greuter, W.McNeill, J.Barrie, F.R.Burdet, H.M.Demoulin, V.Filgueiras, T.S.Nicolson, D.H.Silva, P.C.Skog, J.E.Trehane, P.Turland, N.J.Hawksworth, D.L. eds. 2000International Code of Botanical Nomenclature (Saint Louis Code)KoeltzK’nigsteinGoogle Scholar
  12. Gutiérrez, L., Franco, J., Crossa, J., Abadie, T. 2003Comparing a preliminary racial classification with a numerical classification of the maize landraces of UruguayCrop Sci.43718727Google Scholar
  13. Hammer, K. 2001LinaceaeHanelt, P. eds. Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops (Except Ornamentals)SpringerBerlin, Heidelberg11061108Google Scholar
  14. Hanelt, P. 1988Taxonomy as a tool for studying plant genetic resourcesKulturpflanze3669187CrossRefGoogle Scholar
  15. Hanelt, P. 2001PrefaceHanelt, P. eds. Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops (Except Ornamentals)SpringerBerlin, HeidelbergxxvxxviiGoogle Scholar
  16. Hazekamp, T., Guarino, L. 1999Taxonomy and the conservation and use of plant genetic resourcesAndreus, S.Leslie, A.C.Alexander, C. eds. Taxonomy of Cultivated Plants: Third International SymposiumRoyal Botanical GardensKew, UK1117Google Scholar
  17. Hegi, G. eds. 1925Illustrierte Flora von Mitteleuropa. [Illustrated Flora of Central Europe]Lehmanns VerlagMünchen338Vol. 5, Part 1Google Scholar
  18. Hetterscheid, W.L.A., Brandenburg, W.A. 1995Culton versus taxon; conceptual issues in cultivated plant taxonomyTaxon44161175Google Scholar
  19. Kenaschuk, E.O., Rowland, G.G. 1993FlaxSlinkard, A.E.Knott, D.R. eds. Harvest of Gold: The History of Field Crop Breeding in CanadaUniversity of SaskatchewanSaskatoon173176Google Scholar
  20. Knüpffer, H. eds. 2000Index seminum quae pro mutua commutatione offert IPK Institut für Pflanzengenetik und Kulturpflanzenforschung GaterslebenIPKGatersleben, GermanyGoogle Scholar
  21. Knüpffer, H.Ochsmann, J. eds. 2003Rudolf Mansfeld and Plant Genetic Resources, Proceedings of a Symposium to the 100th Birthday of Rudolf MansfeldGaterslebenGermany8–9 October2001. ZADI/IBV Schiften zu Genetischen Ressourcen, Vol. 22.Google Scholar
  22. Kulpa, W., Danert, S. 1962Zur Systematik von Linum usitatissimum L. [On the systematics of Linum usitatissimum L.]. KulturpflanzeBeiheft3341388Google Scholar
  23. Kutuzova, S.N. 1998Genetika l’naDragavcev, V.A.Fadeeva, T.S. eds. Genetika kul’turnych rastenij (len, kartofel’, morkov’, zelennye kul’tury, gladiolus, jablonaljucerna), [Genetics of Cultivated Plants (Flax, PotatoCarrotGreens, GladiolaAppleAlfalfa]VIRSt. Petersburg652Google Scholar
  24. Leonard, A.C., Franson, S.E., Hertzberg, V.S., Smith, M.K., Toth, G.P. 1999Hypothesis testing with the similarity indexMol. Ecol.821052114CrossRefPubMedGoogle Scholar
  25. Schultze-Motel, J. 1987Numerisch-taxonomische Studien an Triticum L. und Aegilops L. Zur Theorie der Klassifizierung von KulturpflanzenKulturpflanze355397[Numerical taxonomic Studies in Triticum L. and Aegilops L. A Contribution to the Theory of Classifying Cultivated Plants]Google Scholar
  26. Sizov, I.A. 1955Len’. [Flax ]Sel’chozgizMoskvaLeningradGoogle Scholar
  27. Trehane, P., Brickell, C.D., Baum, B.R., Hetterscheid, W.L.A., Leslie, A.C., McNeill, J., Spongberg, S.A., Vrugtman, F. 1995International Code of Nomenclature for Cultivated Plants – 1995QuarterjackWimborneUKGoogle Scholar
  28. Williams, J.K.G., Kubelik, A.R., Livak, K.J., Rafalski, J.A., Tingey, S.V. 1990DNA polymorphisms amplified by arbitrary primers are useful as genetic markersNucleic Acid. Res.1865316535PubMedGoogle Scholar
  29. Zhuchenko, A., Rozmina, T. 2000Mobilizacia genetičeskych resursov l’na. [Mobilization of Flax Genetic Resources]VILAR and VNIILStaritsaRussiaGoogle Scholar
  30. Zhukovskij P.M. 1971. Kul’turnye rastenijai ich sorodiči – sistematika, geografija, citogenetika, imunitet, ekologija, proischodenie, ispol’zovanie. [Cultivated Plants and Their Wild Progenitors – Systematics, Geography, Cytogenetics, Disease ResistanceEcology, Origin, Usage]. Kolos, Leningrad.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Plant Gene Resources of Canada, Saskatoon Research CentreAgri-culture and Agri-Food CanadaSaskatoonCanada

Personalised recommendations