Glass Physics and Chemistry

, Volume 31, Issue 4, pp 489–498 | Cite as

Formation of Lead Selenide Crystallites in a Dielectric Matrix of Lead Selenite

  • V. V. Tomaev
  • L. L. Makarov
  • P. A. Tikhonov
  • V. P. Popov
  • I. V. Rozhdestvenskaya
Proceedings of the Topical Meeting of the European Ceramic Society “Nanoparticles, Nanostructures, and Nanocomposites” (St. Petersburg, Russia, July 5–7, 2004)


The interaction of oxygen with solid lead selenide samples prepared in the form of bulk single crystals, films, pressed pellets, and powders is investigated in the temperature range 298–823 K at exposure times of 5–240 min and an oxygen pressure of ∼105 Pa. All samples are produced from a lead selenide batch heat treated under dynamic vacuum. It is revealed that, under the given thermodynamic conditions, the PbSeO3 phase is formed on the surface of all the PbSe samples beginning with room temperature. No phase transformations are observed in the sample bulk. Lead selenite is synthesized using lead selenide precursor by the solid-phase method in an oxygen atmosphere at temperatures considerably lower than the melting temperature. At the intermediate synthesis stage, it is possible to prepare lead selenide nanocrystalline structures embedded in a PbSeO3 dielectric matrix.


Selenite Oxygen Pressure Selenide Thermodynamic Condition Oxygen Atmosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Suzdalev, I.P. and Suzdalev, P.I., Nanoclusters and Nanocluster Systems: Organization, Interaction, and Properties, Usp. Khim., 2001, vol. 70, no.3, pp. 203–240.Google Scholar
  2. 2.
    Moshnikov, V.A. and Tomaev, V.V., Formation of Nanostructured Layers of Tin Dioxide-Indium Dioxide Solid Solutions with One-, Two-, and Three-Dimensional Nanomorphology, Izv. SPbGETU (LETI), St. Petersburg, 2003, no. 1, pp. 15–19.Google Scholar
  3. 3.
    Huynh, W.U., Dittmer, J.J., and Alivisatos, A.P., Hybrid Nanorod-Polymer Solar Cells, Science (Washington, D. C., 1883-), 2002, vol. 295, pp. 2425–2427.CrossRefPubMedGoogle Scholar
  4. 4.
    Redl, F.X., Cho, K.S., Mirray, C.B., and O’Brien, S., Three-Dimensional Binary Superlattices of Magnetic Nanocrystals and Semiconductor Quantum Dots, Nature (London), 2003, vol. 423, pp. 968–971.CrossRefPubMedGoogle Scholar
  5. 5.
    Bestaev, M.V., Makhin, A.V., Moshnikov, V.A., and Tomaev, V.V., A Technique of Preparing a Batch for Producing Lead and Tin Chalcogenide Solid Solutions by Vapor Phase Methods, RF Patent 2155830, 1997.Google Scholar
  6. 6.
    Izmailov, N.V., Il’in, Yu.L., Moshnikov, V.A., Tomaev, V. V., Yaroslavtsev, N.P., and Yas’kov, D.A., Determination of Lead Selenide Composition Corresponding to the Maximum Melting Temperature, Neorg. Mater., 1989, vol. 25, no.3, pp. 515–517.Google Scholar
  7. 7.
    Tomaev, V.V., Growth and Investigation of Lead and Tin Chalcogenide Single Crystals, Izv. SPbGETU (LETI), St. Petersburg, 2002, no. 1, pp. 34–41.Google Scholar
  8. 8.
    Rao, C.N.R. and Gopalkrishnan, J., New Directions in Solid State Chemistry: Structure, Synthesis, Properties, Reactivity, and Materials Design, Cambridge: Cambridge Univ. Press, 1986. Translated under the title Novye napravleniya v khimii tverdogo tela: Struktura, sintez, svoistva, reaktsionnaya sposobnost’ i dizain materialov, Novosibirsk: Sib. Otd. Akad. Nauk, 1990.Google Scholar
  9. 9.
    Trofimov, V.T., Selivanov, Yu.G., and Chizhevskii, E.G., Photoconductivity of Thin Epitaxial Lead Selenide Films, Fiz. Tech. Poluprovodn. (St. Petersburg), 1996, vol. 30, no.4, pp. 755–763.Google Scholar
  10. 10.
    Neustroev, L.N. and Osipov, V.V., Physical Processes in Photosensitive Polycrystalline Lead Chalcogenide Films, Mikroelektronika, 1986, vol. 17, no.5, pp. 399–416.Google Scholar
  11. 11.
    Popov, V.P., Tikhonov, P.A., and Tomaev, V.V., Investigation into the Mechanism of Oxidation on the Surface of Lead Selenide Semiconductor Structures, Fiz. Khim. Stekla, 2003, vol. 29, no.5, pp. 686–694 [Glass Phys. Chem. (Engl. transl.), 2003, vol. 29, no. 5, pp. 494–500].Google Scholar
  12. 12.
    Tomaev, V.V., Makarov, L.L., Tikhonov, P.A., and Solomennikov, A.A., Oxidation Kinetics of Lead Selenide, Fiz. Khim. Stekla, 2004, vol. 30, no.4, pp. 474–483 [Glass Phys. Chem. (Engl. transl.), 2004, vol. 30, no. 4, pp. 349–355].Google Scholar
  13. 13.
    Zlomanov, V.P., Popovkin, B.A., Tananaeva, O.I., and Novoselova, A.V., Investigation into Properties of Lead Selenite and Lead Oxyselenites, Zh. Neorg. Khim., 1962, vol. 7, no.12, pp. 2746–2751.Google Scholar
  14. 14.
    Zlomanov, V.P. and Novoselova, A.V., A Study of Interaction of Lead Selenide with Oxygen, Dokl. Akad. Nauk SSSR, 1962, vol. 143, no.1, pp. 115–118.Google Scholar
  15. 15.
    Popovkin, B.A., Kovba, L.M., Zlomanov, V.P., and Novoselova, A.V., A Study of Interaction of Lead Selenide with Oxygen, Dokl. Akad. Nauk SSSR, 1959, vol. 129, no.4, pp. 809–812.Google Scholar
  16. 16.
    Bube, R.H., Photoconductivity of Solids, New York: Wiley, 1960. Translated under the title Fotoprovodimost’ tverdykh tel, Moscow: Inostrannaya Literatura, 1962.Google Scholar
  17. 17.
    Zlomanov, V.P., Muratova, G.V., and Novoselova, A.V., Preparation of Lead Selenide, Zh. Neorg. Khim., 1960, vol. 6, pp. 1730–1731.Google Scholar
  18. 18.
    Abrikosov, N.Kh., Bankina, V.F., Poretskaya, L.V., Skudnova, E.V., and Shelimova, L.E., Poluprovodnikovye soedineniya, ikh poluchenie i svoistva (Semiconductors, Their Preparation, and Properties), Moscow: Nauka, 1967.Google Scholar
  19. 19.
    Ravich, Yu.I., Efimova, B.A., and Smirnov, I.A., Metody issledovaniya poluprovodnikov v primenenii k khal’kogenidam svintsa PbTe, PbSe, PbS (Methods for Investigating Semiconductors as Applied to PbTe, PbSe, and PbS Lead Chalcogenides), Stil’bans, L.S., Ed., Moscow: Nauka, 1968.Google Scholar
  20. 20.
    X-ray Diffraction Date Cards, ICDD, 2002, nos. 15-462-15-471.Google Scholar
  21. 21.
    Fischer, R., Die Kristallstruktur von Molybdomenit, PbSeO3, Tschermaks Mineral. Petrogr. Mitt., 1972, vol. 17, pp. 196–207.CrossRefGoogle Scholar
  22. 22.
    Kovtunenko, P.V., Fizicheskaya khimiya tverdogo tela. Kristally s defektami (Physical Chemistry of Solids: Crystals with Defects), Moscow: Vysshaya Shkola, 1993.Google Scholar
  23. 23.
    Morrison, S.R., The Chemical Physics of Surfaces, New York: Plenum, 1977. Translated under the title Khimicheskaya fizika poverkhnosti tverdogo tela, Moscow: Mir, 1980.Google Scholar
  24. 24.
    Barinskii, R.L. and Nefedov, V.D., Rentgenospektral’noe opredelenie zaryadov atomov v molekulakh (X-ray Spectral Determination of Atomic Charges in Molecules), Moscow: Nauka, 1966.Google Scholar
  25. 25.
    Abrikosov, N.Kh. and Shelimova, L.E., Poluprovodnikovye materialy na osnove soedinenii A4B6 (Semiconductor Materials Based on AIVBVI Compounds), Moscow: Nauka, 1975.Google Scholar
  26. 26.
    Aleskovskii, V.B., Khimiya nadmolekulyarnykh soedinenii (Chemistry of Supramolecular Compounds), St. Petersburg: St. Petersburg Gos. Univ., 1996.Google Scholar
  27. 27.
    Polyakov, A.A., Tekhnologiya keramicheskikh radioelektronnykh materialov (Technology of Ceramic Electronic Materials), Moscow: Radio i Svyaz’, 1989.Google Scholar
  28. 28.
    Popovkin, B.A., Zlomanov, V.P., and Novoselova, A.V., A Study of Thermal Decomposition of Lead Selenate and Lead Selenite, Zh. Neorg. Khim., 1960, vol. 5, no.10, pp. 2261–2264.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • V. V. Tomaev
    • 1
  • L. L. Makarov
    • 2
  • P. A. Tikhonov
    • 3
  • V. P. Popov
    • 3
  • I. V. Rozhdestvenskaya
    • 2
  1. 1.St. Petersburg State University of Electrical EngineeringSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations