Skip to main content
Log in

Formation of Lead Selenide Crystallites in a Dielectric Matrix of Lead Selenite

  • Proceedings of the Topical Meeting of the European Ceramic Society “Nanoparticles, Nanostructures, and Nanocomposites”
  • (St. Petersburg, Russia, July 5–7, 2004)
  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The interaction of oxygen with solid lead selenide samples prepared in the form of bulk single crystals, films, pressed pellets, and powders is investigated in the temperature range 298–823 K at exposure times of 5–240 min and an oxygen pressure of ∼105 Pa. All samples are produced from a lead selenide batch heat treated under dynamic vacuum. It is revealed that, under the given thermodynamic conditions, the PbSeO3 phase is formed on the surface of all the PbSe samples beginning with room temperature. No phase transformations are observed in the sample bulk. Lead selenite is synthesized using lead selenide precursor by the solid-phase method in an oxygen atmosphere at temperatures considerably lower than the melting temperature. At the intermediate synthesis stage, it is possible to prepare lead selenide nanocrystalline structures embedded in a PbSeO3 dielectric matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Suzdalev, I.P. and Suzdalev, P.I., Nanoclusters and Nanocluster Systems: Organization, Interaction, and Properties, Usp. Khim., 2001, vol. 70, no.3, pp. 203–240.

    Google Scholar 

  2. Moshnikov, V.A. and Tomaev, V.V., Formation of Nanostructured Layers of Tin Dioxide-Indium Dioxide Solid Solutions with One-, Two-, and Three-Dimensional Nanomorphology, Izv. SPbGETU (LETI), St. Petersburg, 2003, no. 1, pp. 15–19.

  3. Huynh, W.U., Dittmer, J.J., and Alivisatos, A.P., Hybrid Nanorod-Polymer Solar Cells, Science (Washington, D. C., 1883-), 2002, vol. 295, pp. 2425–2427.

    Article  PubMed  Google Scholar 

  4. Redl, F.X., Cho, K.S., Mirray, C.B., and O’Brien, S., Three-Dimensional Binary Superlattices of Magnetic Nanocrystals and Semiconductor Quantum Dots, Nature (London), 2003, vol. 423, pp. 968–971.

    Article  PubMed  Google Scholar 

  5. Bestaev, M.V., Makhin, A.V., Moshnikov, V.A., and Tomaev, V.V., A Technique of Preparing a Batch for Producing Lead and Tin Chalcogenide Solid Solutions by Vapor Phase Methods, RF Patent 2155830, 1997.

  6. Izmailov, N.V., Il’in, Yu.L., Moshnikov, V.A., Tomaev, V. V., Yaroslavtsev, N.P., and Yas’kov, D.A., Determination of Lead Selenide Composition Corresponding to the Maximum Melting Temperature, Neorg. Mater., 1989, vol. 25, no.3, pp. 515–517.

    Google Scholar 

  7. Tomaev, V.V., Growth and Investigation of Lead and Tin Chalcogenide Single Crystals, Izv. SPbGETU (LETI), St. Petersburg, 2002, no. 1, pp. 34–41.

  8. Rao, C.N.R. and Gopalkrishnan, J., New Directions in Solid State Chemistry: Structure, Synthesis, Properties, Reactivity, and Materials Design, Cambridge: Cambridge Univ. Press, 1986. Translated under the title Novye napravleniya v khimii tverdogo tela: Struktura, sintez, svoistva, reaktsionnaya sposobnost’ i dizain materialov, Novosibirsk: Sib. Otd. Akad. Nauk, 1990.

    Google Scholar 

  9. Trofimov, V.T., Selivanov, Yu.G., and Chizhevskii, E.G., Photoconductivity of Thin Epitaxial Lead Selenide Films, Fiz. Tech. Poluprovodn. (St. Petersburg), 1996, vol. 30, no.4, pp. 755–763.

    Google Scholar 

  10. Neustroev, L.N. and Osipov, V.V., Physical Processes in Photosensitive Polycrystalline Lead Chalcogenide Films, Mikroelektronika, 1986, vol. 17, no.5, pp. 399–416.

    Google Scholar 

  11. Popov, V.P., Tikhonov, P.A., and Tomaev, V.V., Investigation into the Mechanism of Oxidation on the Surface of Lead Selenide Semiconductor Structures, Fiz. Khim. Stekla, 2003, vol. 29, no.5, pp. 686–694 [Glass Phys. Chem. (Engl. transl.), 2003, vol. 29, no. 5, pp. 494–500].

    Google Scholar 

  12. Tomaev, V.V., Makarov, L.L., Tikhonov, P.A., and Solomennikov, A.A., Oxidation Kinetics of Lead Selenide, Fiz. Khim. Stekla, 2004, vol. 30, no.4, pp. 474–483 [Glass Phys. Chem. (Engl. transl.), 2004, vol. 30, no. 4, pp. 349–355].

    Google Scholar 

  13. Zlomanov, V.P., Popovkin, B.A., Tananaeva, O.I., and Novoselova, A.V., Investigation into Properties of Lead Selenite and Lead Oxyselenites, Zh. Neorg. Khim., 1962, vol. 7, no.12, pp. 2746–2751.

    Google Scholar 

  14. Zlomanov, V.P. and Novoselova, A.V., A Study of Interaction of Lead Selenide with Oxygen, Dokl. Akad. Nauk SSSR, 1962, vol. 143, no.1, pp. 115–118.

    Google Scholar 

  15. Popovkin, B.A., Kovba, L.M., Zlomanov, V.P., and Novoselova, A.V., A Study of Interaction of Lead Selenide with Oxygen, Dokl. Akad. Nauk SSSR, 1959, vol. 129, no.4, pp. 809–812.

    Google Scholar 

  16. Bube, R.H., Photoconductivity of Solids, New York: Wiley, 1960. Translated under the title Fotoprovodimost’ tverdykh tel, Moscow: Inostrannaya Literatura, 1962.

    Google Scholar 

  17. Zlomanov, V.P., Muratova, G.V., and Novoselova, A.V., Preparation of Lead Selenide, Zh. Neorg. Khim., 1960, vol. 6, pp. 1730–1731.

    Google Scholar 

  18. Abrikosov, N.Kh., Bankina, V.F., Poretskaya, L.V., Skudnova, E.V., and Shelimova, L.E., Poluprovodnikovye soedineniya, ikh poluchenie i svoistva (Semiconductors, Their Preparation, and Properties), Moscow: Nauka, 1967.

    Google Scholar 

  19. Ravich, Yu.I., Efimova, B.A., and Smirnov, I.A., Metody issledovaniya poluprovodnikov v primenenii k khal’kogenidam svintsa PbTe, PbSe, PbS (Methods for Investigating Semiconductors as Applied to PbTe, PbSe, and PbS Lead Chalcogenides), Stil’bans, L.S., Ed., Moscow: Nauka, 1968.

    Google Scholar 

  20. X-ray Diffraction Date Cards, ICDD, 2002, nos. 15-462-15-471.

  21. Fischer, R., Die Kristallstruktur von Molybdomenit, PbSeO3, Tschermaks Mineral. Petrogr. Mitt., 1972, vol. 17, pp. 196–207.

    Article  Google Scholar 

  22. Kovtunenko, P.V., Fizicheskaya khimiya tverdogo tela. Kristally s defektami (Physical Chemistry of Solids: Crystals with Defects), Moscow: Vysshaya Shkola, 1993.

    Google Scholar 

  23. Morrison, S.R., The Chemical Physics of Surfaces, New York: Plenum, 1977. Translated under the title Khimicheskaya fizika poverkhnosti tverdogo tela, Moscow: Mir, 1980.

    Google Scholar 

  24. Barinskii, R.L. and Nefedov, V.D., Rentgenospektral’noe opredelenie zaryadov atomov v molekulakh (X-ray Spectral Determination of Atomic Charges in Molecules), Moscow: Nauka, 1966.

    Google Scholar 

  25. Abrikosov, N.Kh. and Shelimova, L.E., Poluprovodnikovye materialy na osnove soedinenii A4B6 (Semiconductor Materials Based on AIVBVI Compounds), Moscow: Nauka, 1975.

    Google Scholar 

  26. Aleskovskii, V.B., Khimiya nadmolekulyarnykh soedinenii (Chemistry of Supramolecular Compounds), St. Petersburg: St. Petersburg Gos. Univ., 1996.

    Google Scholar 

  27. Polyakov, A.A., Tekhnologiya keramicheskikh radioelektronnykh materialov (Technology of Ceramic Electronic Materials), Moscow: Radio i Svyaz’, 1989.

    Google Scholar 

  28. Popovkin, B.A., Zlomanov, V.P., and Novoselova, A.V., A Study of Thermal Decomposition of Lead Selenate and Lead Selenite, Zh. Neorg. Khim., 1960, vol. 5, no.10, pp. 2261–2264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2005 by Fizika i Khimiya Stekla, Tomaev, Makarov, Tikhonov, Popov, Rozhdestvenskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomaev, V.V., Makarov, L.L., Tikhonov, P.A. et al. Formation of Lead Selenide Crystallites in a Dielectric Matrix of Lead Selenite. Glass Phys Chem 31, 489–498 (2005). https://doi.org/10.1007/s10720-005-0088-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10720-005-0088-7

Keywords

Navigation