Glass Physics and Chemistry

, Volume 31, Issue 3, pp 280–290 | Cite as

Investigation into the Heterocoagulation of Two-Component Disperse Systems Containing Nanosized and Submicron Particles with Different Degrees of Hydrophilicity

  • E. V. Golikova
  • Yu. M. Chernoberezhskii
Proceedings of the Topical Meeting of the European Ceramic Society “Nanoparticles, Nanostructures, And Nanocomposites” (St. Petersburg, Russia, July 5–7, 2004)


The aggregate stability of binary mixtures that contain two hydrophobic components [SiO2-FeOOH, Au-Fe(OH)3], hydrophobic and hydrophilic components (SiO2-ZrO2, SiO2-CeO2, FeOOH-natural diamond), and two hydrophilic components (CeO2-natural diamond, ZrO2-natural diamond) is investigated by photometry and ultramicroscopy over wide ranges of KCl concentrations and pH. It is shown that the stability of binary mixtures containing one or two hydrophobic components can be qualitatively explained in terms of the Derjaguin theory of heterocoagulation of hydrophobic colloids. The stability of mixed binary sols is determined by the stability of the component with a dominant number concentration of particles. The heteroadagulation stabilization due to the ionic electrostatic or structural stability ratio of the nanosized component in the mixture is revealed.


Physical Chemistry Binary Mixture Structural Stability Number Concentration Disperse System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Derjaguin, B.V., The Theory of Heterocoagulation, Interaction, and Coalescence of Unlike Particles in Electrolyte Solutions, Kolloidn. Zh., 1954, vol. 16, no.6, pp. 425–438.Google Scholar
  2. 2.
    Devereux, O.F. and De Bruyn, P.I., Interaction of Plane-Parallel Double Layers, Cambridge (Mass.): MIT Press, 1963.Google Scholar
  3. 3.
    Hogg, R., Healy, T.W., and Furstenau, D.W., Mutual Coagulation of Colloid Dispersions, Trans. Faraday Soc., 1966, vol. 62, pp. 1638–1651.Google Scholar
  4. 4.
    Bell, G.M. and Peterson, G.C., Calculation of the Electric Double Layer Force between Unlike Spheres, J. Colloid Interface Sci., 1972, vol. 41, no.3, pp. 542–566.Google Scholar
  5. 5.
    Usui, R., Interaction of Electrical Double Layers at Constant Surface Charge, in Progress in Surface and Membrane Science, New York: Academic, 1972, vol. 5, pp. 223–275.Google Scholar
  6. 6.
    Prieve, D.C. and Ruckenstein, E., Role of Surface Chemistry in Primary and Secondary Coagulation and Heterocoagulation, J. Colloid Interface Sci., 1980, vol. 73, no.2, pp. 539–555.Google Scholar
  7. 7.
    Dumont, F., Ameryckx, G., and Watillon, A., Heterocoagulation between Small and Large Colloidal Particles, Colloid Surf., 1990, vol. 51, no.1, pp. 171–188.Google Scholar
  8. 8.
    Barouch, E., Matijevic, E., Ring, T.A., and Finlan, G.M., Heterocoagulation: Interaction Energy of Two Unequal Spheres, Thin Solid Films, 1978, vol. 67, no.1, pp. 1–9.Google Scholar
  9. 9.
    Oshima, H.J., Electrostatic Interaction between Two Dissimilar Spheres: An Explicit Analytic Expression, J.Colloid Interface Sci., 1994, vol. 168, no.1, pp. 255–267.Google Scholar
  10. 10.
    Brinker, C.J. and Scherer, G.S., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Boston: Academic, 1990.Google Scholar
  11. 11.
    Semenov, A.D., Golikova, E.V., Grigor’ev, V.S., and Kulagin, K.M., Investigation of Structuring in OX50 Aerosil Dispersions, Zhurn. Obshch. Khim., 2002, vol. 74, no.1, pp. 21–29.Google Scholar
  12. 12.
    Semenov, A.D., Golikova, E.V., Grigoriev, V.S., Shashkin, V.S., and Petrovskiy, G.T., Structure Formation and Aggregate Stability of Aerosil Dispersions Used at Sol-Gel Processes, Abstracts of Papers, International Conference on Colloid Chemistry and Physical-Chemical Mechanics, Moscow: PA44, p. 105.Google Scholar
  13. 13.
    Ioganson, O.M., Golikova, E.V., Duda, L.V., Osmolovskii, M.G., Yanklovich, A.I., and Chernoberezhskii, Yu.M., Aggregate Stability of α-Fe2O3, α-FeOOH, and Cr2O3 Aqueous Dispersions under Isoelectric Conditions, Kolloidn. Zh., 1998, vol. 60, no.2, pp. 188–198.Google Scholar
  14. 14.
    Golikova, E.V., Rogoza, O.M., Shelkunov, D.M., and Chernoberezhskii, Yu.M., Electrical Surface Properties and Aggregate Stability of TiO2 and ZrO2 Aqueous Dispersions, Kolloidn. Zh., 1995, vol. 57, no.1, pp. 25–29.Google Scholar
  15. 15.
    De Taria, L.A. and Trasatti, S., The Point of Zero Charge of CeO2, J. Colloid Interface Sci., 1978, vol. 65, no.3, pp. 548–556.Google Scholar
  16. 16.
    Kuchuk, V.I., Golikova, E.V., and Chernoberezhskii, Yu.M., Potentiometric Titration of a Diamond Micropowder, Kolloidn. Zh., 1984, vol. 46, no.6, pp. 1129–1134.Google Scholar
  17. 17.
    Golikova, E.V., Chernoberezhskii, Yu.M., Kuchuk, V.I., and Molchanova, L.L., Investigation into Aggregate Stability and Electrophoretic Behavior of Natural-Diamond Dispersions, Kolloidn. Zh., 1983, vol. 45, no.5, pp. 864–869.Google Scholar
  18. 18.
    Chernoberezhskii, Yu.M., Golikova, E.V., and Kuchuk, V.I., On the Role of Boundary Layers in the Stability of Aqueous Dispersions of Hydrophilic Quartz and Natural-Diamond Particles, Vestn. Leningr. Univ., Ser. 4: Fiz. Khim., 1987, no. 1(4), pp. 38–43.Google Scholar
  19. 19.
    Grigorov, O.N., Karpova, I.F., Koz’mina, Z.P., Tikhomolova, K.P., Fridrikhsberg, D.A., and Chernoberezhskii, Yu.M., Rukovodstvo k prakticheskim rabotam po kolloidnoi khimii (Practical Works in Colloid Chemistry: A Manual), Leningrad: Leningr. Gos. Univ., 1964.Google Scholar
  20. 20.
    Colloid Science, Kruyt, H., Ed., Amsterdam: Elsevier, 1952, vol. 1. Translated under the title Nauka o kolloidakh, Moscow: Inostrannaya Literatura, 1955, vol. 1.Google Scholar
  21. 21.
    Parks, G.A., The Isoelectric Points of Solid Oxides: Solid Hydroxides and Aqueous Hydrocomplex Systems, Chem. Rev., 1965, vol. 65, no.2, pp. 177–198.Google Scholar
  22. 22.
    Davis, J.A. and Leckie, J.O., Surface Ionization and Complexation at the Oxide/Water Interface II: Surface Properties of Amorphous Iron Oxyhydroxide and Adsorption Ions, J. Colloid Interface Sci., 1978, vol. 67, no.1, pp. 90–107.Google Scholar
  23. 23.
    Kudryavtseva, N.M. and Derjaguin, B.V., A Laboratory Setup for Measuring the Particle Concentration and Dispersion Composition of Hydrosols and Oil Sols, Kolloidn. Zh., 1963, vol. 25, no.6, pp. 739–741.Google Scholar
  24. 24.
    Molodkina, L.M., Golikova, E.V., Selent’ev, D.G., Kolikov, V.M., and Chernoberezhskii, Yu.M., Determination of Sizes of Influenza Virus Particles by Flow Ultramicroscopy, Kolloidn. Zh., 1987, vol. 49, no.3, pp. 580–583.Google Scholar
  25. 25.
    Derjaguin, B.V., Teoriya ustoichivosti kolloidov i tonkikh plenok (The Theory of Stability of Colloids and Thin Films), Moscow: Nauka, 1986.Google Scholar
  26. 26.
    Derjaguin, B.V., Churaev, N.V., and Muller, V.M., Poverkhnostnye sily (Surface Forces), Moscow: Nauka, 1985.Google Scholar
  27. 27.
    Visser, J., On Hamaker Constants: A Comparison between Hamaker Constants and Lifshitz-van der Waals Constants, Adv. Colloid Interface Sci., 1972, vol. 3, no.4, pp. 331–363.Google Scholar
  28. 28.
    Bergtrom, L., Hamaker Constants of Inorganic Materials, Adv. Colloid. Interface Sci., 1997, vol. 70, no.1, pp. 125–169.Google Scholar
  29. 29.
    Peshel’, G. and Beloushek, P., The Influence of Electrolytes on the Water Structure in the Vicinity of Fused-Silica Surfaces, in Poverkhnostnye sily v tonkikh plenkakh (Surface Forces in Thin Films), Moscow: Nauka, 1979, pp. 51–60.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • E. V. Golikova
    • 1
  • Yu. M. Chernoberezhskii
    • 2
  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg Technological University of Plant PolymersSt. PetersburgRussia

Personalised recommendations